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Abstract

We conduct a systematic test of the theory of selective disclosure. An informed

sender seeks to influence an uninformed receiver by disclosing pieces of evidence.

While the disclosed evidence is verifiable, the sender may select it from a larger

pool of available evidence, known only to her. Our experimental design exploits

the rich comparative-static predictions that result from varying the quantity of ev-

idence available to the sender and how much of it can be disclosed to the receiver.

Our findings corroborate the key qualitative predictions of the theory, thereby of-

fering empirical support for selective disclosure as a significant force in communi-

cation. We also uncover two quantitative departures from the theory: Some senders

persistently communicate more than predicted, and receivers partially neglect that

the disclosed evidence is selected.

We are thankful to Navin Kartik and Marco Ottaviani and seminar participants at Bocconi University, Brown

University, Columbia University, John Hopkins University, MIT, New York University, Northwestern University,

Princeton University, and University of Pittsburgh for helpful comments.



1 Introduction

This paper presents the results of an experimental analysis of selective disclosure, a pervasive

force in communication. In many situations, an informed sender seeks to influence the actions

of an uninformed receiver by selecting which pieces of evidence, among many, to disclose. For

instance, a journalist may choose what news events to report on depending on how they reflect

on a political candidate; a defense lawyer may choose which evidence to present in court to

increase the chance of her client’s acquittal; a manager may choose which specific financial

metrics to include in the company’s annual report to shareholders.1 These settings share two

key features. The disclosed evidence is verifiable (i.e., the sender cannot fabricate it), but it

may be selected from a larger pool, known only to the sender. Thus, even though the evidence

is verifiable, its interpretation depends on the context—e.g., the sender’ objective, or how much

evidence was available—which ultimately determines the selection process.

Our experimental analysis is informed by a theory of selective disclosure that provides rich

comparative statics, varying the quantity of evidence available to the sender and how much of

it can be disclosed to the receiver. These comparative statics allow for a systematic test of se-

lective disclosure. Relative to existing experiments, we shift the focus away from the well-

studied question of whether evidence is disclosed, to the less explored question of which evi-

dence is disclosed. Specifically, we analyze which evidence senders choose to disclose, how

receivers respond to potentially selected evidence, and how selection impacts the overall in-

formativeness of communication. Our results corroborate the key qualitative predictions of the

theory, but also uncover two quantitative departures: First, some senders persistently commu-

nicate more than predicted, in contrast with most of the existing literature on disclosure; Sec-

ond, receivers partially neglect selection, despite having ample learning opportunities. These

results may inform policy, suggesting that mandating disclosure can be ineffective, and possi-

bly detrimental, when selection opportunities are large.

Our model, which builds on Milgrom (1981), features a sender who privately observes the

realization of a binary state of the world and has access to N independent signals, which are

informative about the state. The sender can verifiably disclose up to K of these signals to a

receiver. Thus, N represents how much evidence is available to the sender, and K represents

the communication capacity of the environment. The receiver observes the disclosed signals

and takes an action. Her payoff is quadratic in the distance between her action and the realized

state. The sender’s payoff, instead, is state-independent and increases with a; i.e., she wishes to

1In political economy, selective disclosure is considered one of the principal sources of media slant, where it
is known as filtering or fact bias (see, e.g., Prat and Strömberg, 2013; Gentzkow et al., 2015).
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persuade the receiver to take a higher action. Because the set of signal realizations is ordered

and their distribution satisfies the monotone likelihood-ratio property, a higher signal realiza-

tion is “more favorable” in the sense that, everything else being equal, it leads the receiver to

take a higher action. Milgrom (1981) shows that, in this setting, there is a sequential equilib-

rium in which the sender discloses the K most favorable signals she observes. Under a suitable

refinement—which relates to neologism proofness (Farrell, 1993)—we show that this equilib-

rium is also unique.

Our model makes several comparative-static predictions in K and N, which inspire our ex-

perimental design. In terms of players’ behavior, the sender should disclose signals that appear

more favorable as N increases and less favorable as K increases. Due to this positive selection,

receivers should become more skeptical of any message as N increases or K decreases. Our

main aggregate predictions concern the informativeness of the equilibrium, defined as the cor-

relation between the state and the receiver’s action. This measure captures how much informa-

tion is transferred between the sender and the receiver. Fixing N, the informativeness should

increase in K. Fixing K, the informativeness may display a non-monotonic relation with N, but

necessarily decreases to zero as N grows large. These last predictions stem from a balance be-

tween the following two forces. On the one hand, a larger N allows the sender to be more selec-

tive, which decreases equilibrium informativeness. On the other, it also improves the sender’s

ability to communicate the state, which can increase informativeness. Thus, changing K and N

allows us to span models in between the tradition of verifiable disclosure (e.g., Milgrom, 1981;

Grossman, 1981) at one extreme, and cheap talk (e.g., Crawford and Sobel, 1982) at the other.

These extremes have often been analyzed separately by the experimental literature, leading to

contrasting findings that our hybrid setting can help reconcile.

Our experimental treatments follow a 2x3-factorial, between-subject design, which only

varies K and N, leaving all the other model ingredients unchanged. We consider two values for

K—i.e., 1 or 3—and three values for N—i.e., K, 10, or 50. These treatments allow us to test the

full range of predictions discussed above. Most notably, when K = 1, informativeness declines

monotonically in N, while it is nonmonotone (first increasing, then decreasing) when K = 3.

Furthermore, for both values of K, the equilibrium is essentially uninformative when N = 50.

We begin by establishing several patterns in the senders’ data that are consistent with the

key qualitative predictions of the theory. Specifically, we present two sets of positive findings.

First, we find that which evidence senders disclose is largely consistent with the qualitative

predictions of the theory: Senders disclose more favorable signals as N increases or as K de-

creases. Second, we analyze how informative senders’ strategies are, net of mistakes receivers
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may make. In all cases, the average senders’ informativeness changes across treatments in

ways that are consistent with the comparative-statics predictions in N and K. These complex

predictions narrow down the alternative theories that could explain all these observed patterns,

providing a systematic test for our model.

Although the theory explains the qualitative patterns in the senders’ data, we find two main

quantitative deviations. First, senders sometimes disclose less favorable signals despite having

more favorable ones available, showing a “modesty” bias. Second, senders’ strategies are

more informative than predicted, i.e., they overcommunicate. The latter finding contrasts with

most existing experiments on verifiable disclosure, both in the lab and in the field, which find

evidence of undercommunication.2 To explain these deviations, we analyze senders’ behavior

at the individual level. While the majority of senders behave almost exactly as predicted by

the theory, we identify a minority who persistently display behavior that we call “deception

averse:” In the high state, they disclose the most favorable signals available; In the low state,

however, they consistently fail to do so. This behavior can be interpreted as a particularly strong

form of lying aversion: When the state is low, deception-averse senders refrain from disclosing

signals that, despite having verifiably realized, may deceive the receiver. These senders are

thus responsible for the modesty bias discussed above and, as their state-dependent behavior

inflates the overall senders’ informativeness, they explain overcommunication.

Finally, we analyze receivers’ data. Our main positive finding is that receivers respond to the

fact that the evidence they receive is selected, especially when N is larger or K is smaller. As

predicted by the theory, when conditioning on the message’s content, we find that receivers’

guesses are on average lower as N increases or K decreases. That is, receivers become more

skeptical of more selected evidence. While qualitatively these results corroborate the theory, we

also find some departures from it. First, in all treatments receivers tend to be overly optimistic:

Their guesses are higher than the optimal guess given senders’ behavior. Second, this positive

gap is larger in treatments with large N and, therefore, receivers underestimate the impact

of selection, leading them to insufficiently discount good news in settings with large N. We

attribute this unpredicted treatment effect to selection neglect, a bias documented, for instance,

by Enke (2020).

2In the models typically studied in this literature, the theory predicts full disclosure. Thus, it is impossible to
find evidence of overcommunication in those settings. An exception is the work by de Clippel and Rozen (2020).
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1.1 Related Literature

The central result in the early literature on verifiable disclosure is the unraveling principle,

which states that, when the sender can verifiably disclose the state of the world, any equilib-

rium features full information transmission (see, e.g., Grossman, 1981; Milgrom, 1981). Dis-

closure models have been used to study a variety of applications such as quality disclosure by a

privately informed seller or the disclosure of financial information by a firm (e.g., Verrecchia,

1983; Dye, 1985; Gal-Or, 1985). Milgrom (2008) and Dranove and Jin (2010) survey this lit-

erature.

The basic structure of the model we study dates back to Milgrom (1981). He shows that, for

a generic K, there is a maximally selective equilibrium. Fishman and Hagerty (1990), build on

Milgrom’s model. They show that when K = 1 and N is large the equilibrium is uninformative.

They then provide results that relate to the value of discretion in communication. In a related

setting, Di Tillio et al. (2021) provide conditions under which observing the K most favorable

signals out of N is more informative than observing K chosen at random. They show that in

experiments with additive noise, increasing N increases (decreases) informativeness if and only

if the reverse hazard function of the noise distribution is log-concave (log-convex). In contrast,

in our environment with discrete signals and full support, informativeness must eventually

decrease for all distributions, and we highlight a non-monotonicity result. Haghtalab et al.

(2021) consider a model in which a sender can choose to send one signal out of N. One

important difference in their setting is that the sender must choose one of the N signals and

cannot choose to be silent.3

Our paper relates to a large body of experimental literature on cheap talk, which has been

recently surveyed by Blume et al. (2020). In particular, Cai and Wang (2006) vary preference

alignment between the sender and the receiver; they find that senders overcommunicate rela-

tive to the predictions of the cheap talk model and that receivers are overly trusting.4 In con-

trast to experiments on cheap talk, experiments on the disclosure of verifiable information con-

sistently find that senders under-communicate relative to the theoretical predictions. For in-

stance, Jin et al. (2021) find that receivers are insufficiently skeptical when senders do not pro-

vide any information, which in turn leads senders to under-communicate.5 This result has been
3Shin (2003), Dziuda (2011), and Hoffmann et al. (2020) study richer settings that also feature selective

disclosure. Regarding equilibrium selection, Bertomeu and Cianciaruso (2018), Gieczewski and Titova (2024),
and Gao (2024) propose equilibrium refinements for games with verifiable disclosure that, like ours, build on the
tradition of neologism or announcement proofness.

4See also Dickhaut et al. (1995), Blume et al. (1998), Forsythe et al. (1999), Blume et al. (2001), Sánchez-
Pagés and Vorsatz (2007), Wang et al. (2010), and Wilson and Vespa (2020).

5See also Forsythe et al. (1989), King and Wallin (1991), Dickhaut et al. (2003), Forsythe et al. (1999),
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confirmed by several papers, that modify the information environment. In particular, the liter-

ature has allowed for vagueness of the messages (Li and Schipper, 2020; Deversi et al., 2021),

multidimensional states (Farina and Leccese, 2024), subjects’ communication or more realistic

contexts (Montero and Sheth, 2021), different preference alignments (Hagenbach and Perez-

Richet, 2018) and partial commitment power for the sender (Fréchette et al., 2022).

Jin et al. (2022) and de Clippel and Rozen (2020) find evidence for strategic obfuscation of

verifiable evidence. Information unraveling has also been studied in the field. For instance,

Mathios (2000) and Jin and Leslie (2003) document the failures of information unraveling for

food nutrition labels and hygiene grade cards in restaurants.

There is limited experimental evidence on partial verifiability of information. Li and Schip-

per (2018) studies a setting in which the receiver is unaware of the amount of evidence avail-

able to the sender. Burdea et al. (2023) designs an experiment to empirically test the predictions

from Glazer and Rubinstein (2004) and Glazer and Rubinstein (2006). An informed sender

sends a two-dimensional message to a receiver. The verifiability of the message depends on the

treatment: either it is pure cheap talk, or only one dimension is verifiable. In the last case, the

paper looks at two different treatments in which the dimension to verify is either chosen by the

sender or by the receiver. Brown and Fragiadakis (2019) investigates receiver’s understanding

of the value of strategically selected information by comparing a setting in which the disclo-

sure is exogenously mandated to one in which the sender can choose to disclose self-serving

attributes. Penczynski et al. (2022) studies a setting in which the sender can selectly disclose

verifiable information, as in our setting, but the main focus of the paper is to investigate the ef-

fect of competition on the effectiveness of communication.

In contemporaneous work, Ispano (2024) studies the selective disclosure of noisy evidence

within an experimental framework that shares many similarities with ours. We highlight the

three main differences relative to our design. First, his design does not allow for a test of the

nonmonotonicity of informativeness in N. Second, he does not explore treatments with large

N, which approximate a cheap talk setting. Third, his design assumes binary evidence, which

simplifies the sender’s problem. Net of these differences, the main results in Ispano (2024)

appear to be qualitatively consistent with ours.6

Benndorf et al. (2015), Hagenbach et al. (2014) and Hagenbach and Perez-Richet (2018).
6Degan et al. (2023) experimentally tests the predictions from Di Tillio et al. (2017). An informed sender can

disclose one of two signals but can only observe one of them. They compare a treatment in which of the two
signals is disclosed is randomly determined with a treatment in which the sender can strategically select the signal
to disclose (which they call manipulation). They report experimental results that are qualitatively in line with the
theory. In particular, they find that there are instances where manipulated disclosure leads to higher welfare for
the receiver.
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2 Theory

2.1 Model

The model closely builds on Milgrom (1981). We examine the interaction between a privately-

informed sender and an uninformed receiver. The sender observes an underlying state of the

world and N signals that are informative about the state. She can verifiably disclose up to K of

these signals to the receiver, who then chooses an action affecting the payoff of both players.

Formally, the sender privately observes a state θ, which belongs to a finite subset Θ ⊂
R. The state is distributed according to a common prior distribution p ∈ ∆(Θ) that has

full support. The sender privately observes N ≥ 1 conditionally independent and identically

distributed signals (s1, . . . , sN), which are informative about θ. Each signal s belongs to a finite

and ordered set S and is distributed according to f (·|θ) ∈ ∆(S). We assume that f satisfies

the monotone likelihood ratio property, meaning that f (s|θ′)
f (s|θ) is monotone increasing in s for all

θ′ > θ.

The sender can verifiably disclose up to K ≤ N of the N signals. We refer to the vector of

disclosed signals, listed in decreasing order, as the sender’s message, denoted by m. We denote

a message that contains no signal by ∅. Information is verifiable, meaning the sender can only

disclose signals among those that have indeed been realized. The sender cannot fabricate new

signals. We denote by M the set of all messages and by M(s̄) ⊆ M the set of messages that

can be sent given s̄.7 Finally, the receiver observes m and chooses an action a ∈ A = co(Θ).

The sender’s payoff is v(θ, a) = a, and the receiver’s payoff is u(θ, a) = −(a − θ)2.

A strategy for the sender is a mapping σS : Θ × SN → ∆(M), subject to the verifiability

requirement m ∈ M(s̄), for all s̄ and m ∈ supp σS(θ, s̄). A strategy for the receiver is a

mapping σR : M → ∆(A). As in prior literature, (e.g., see Okuno-Fujiwara et al., 1990), we

focus on Perfect Bayesian equilibria (PBE) in which the sender’s strategy is pure. In addition,

we restrict attention to sender’s strategies that are independent of θ. Thus, a sender’s strategy

is a map σS : SN → M.

Discussion. The model describes situations in which the sender can disclose only a limited

amount of noisy evidence. No message can verifiably reveal the payoff-relevant state θ. This

contrasts with most of the literature on information disclosure, which assumes a sender can

7Formally, the message space is M := {∅} ∪ {s̄ ∈ Sk | 1 ≤ k ≤ K and s̄i ≥ s̄j for i ≤ j}. The set of
messages that can be sent given s̄ is M(s̄) := {m′ ∈ M | if m′ , {∅}, ∃ 1 ≤ k ≤ K and an injective ρ :
{1, ..., k} → {1, ..., N} s.t. m′ = (s̄ρ(1), ..., s̄ρ(k))}.
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verifiably reveal the state if desired. This is a key feature of our setting, as it leads to a failure

of the unraveling principle (Okuno-Fujiwara et al., 1990): That is, no equilibrium is fully

informative of the state, and changes in K and N give rise to nontrivial comparative statics in

equilibrium informativeness.

In our model, N is exogenous, not chosen by the sender. Although in many applied settings

the sender may influence N, this modeling choice allows us to focus our attention on the se-

lection problem—which pieces of evidence the sender chooses to disclose—abstracting from

the distinct problem of evidence generation. The selection of evidence, rather than its conceal-

ment, becomes a primary force in the model only when K < N. Such a situation reflects ex-

ogenous communication constraints, such as the receiver’s inability to process too many sig-

nals, or institutional constraints that prevent the sender from disclosing all available evidence.

Our communication model has two key features. First, the disclosed evidence is verifiable,

i.e., the sender cannot fabricate it. As such, this model falls in the tradition of disclosure

models (e.g., Milgrom, 1981; Grossman, 1981). Second, when K < N, the disclosed evidence

may be selected from a larger pool of evidence that only the sender can observe. As such,

its interpretation depends on the context, a property that is reminiscent of cheap talk (e.g.,

Crawford and Sobel, 1982). As we will show, changing K and N allows us to span models in

between these two classical traditions.

2.2 Equilibrium Predictions

Our setting can feature multiple equilibria. While this is common in many communication

games, it is not typical in games of verifiable information disclosure, which typically feature

a unique equilibrium outcome with full information transmission. Our analysis focuses on a

natural equilibrium class in which the sender is maximally selective: Her strategy consists of

disclosing the K highest available signals.

Definition 1. Fix N and K. A sender’s strategy σ : SN → M is maximally selective if, for

each s̄, the message m = σ(s̄) contains the K highest signals in s̄.

We focus on maximally selective equilibria for several reasons. First, this is the natural coun-

terpart of the full disclosure result that obtains when senders possess verifiable evidence that is

fully revealing. Second, this selection has a theoretical foundation. Indeed, the maximally se-

lective equilibrium is unique among equilibria that are neologism-proof (Farrell (1993)). We

discuss the details of this refinement in Appendix A. Third, this selection has empirical sup-

port. As we will see, many features of senders’ behavior are consistent with the maximally
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selective strategy. Moreover, the empirical best response to receivers’ observed strategies is

indeed to disclose the K-highest signals. Finally, the maximally selective equilibrium is the

unique sequential equilibrium when K = N (Proposition 7 Milgrom, 1981); it is useful to fo-

cus on this equilibrium when K < N to allow a simple contrast between these two cases.

The model offers several predictions regarding the behavior of senders and receivers that

are simple but crucial features of behavior with selective disclosure. We summarize these

predictions in the following remark and then offer some discussion.

Remark 1. Predictions regarding players’ behavior:

1. (Sender’s Behavior). Fix K. As N increases, there is a first-order stochastic increase in

the distribution of disclosed signals. Conversely, fix N. As K increases, there is a first-

order stochastic decrease in the distribution of disclosed signals. Finally, the number of

disclosed signals increases with K and is independent of N.

2. (Receiver’s Behavior). Fix any on-path message m. The receiver’s guess decreases in N

and in K.

Regarding sender’s behavior, the model makes a prediction on the “quantity” of signals dis-

closed by the sender—which should increase in K—as well as on their “quality:” better (i.e.,

higher) signals are disclosed when N is higher while worse signals are disclosed when K is

higher. Regarding receiver’s behavior, the model predicts that, fixing any message m, the re-

ceiver should become more skeptical as N increases. To gain intuition, fix K and note that, as

N increases, for any realization of the state θ, the sender’s best K signals are likely to be bet-

ter. Thus, when N increases, the same message m should be perceived more skeptically by the

receiver. Likewise, fixing N, note that when K is higher, the same message m implies more

signals have been concealed. Missing signals should be interpreted by the receiver as the worst

signals, making the receiver more skeptical.

A key set of aggregate predictions of our model concerns the relation between the parame-

ters K and N and the amount of information the sender transmits to the receiver. We define

equilibrium informativeness as the correlation between the state θ and the receiver’s action a,

which we denote by I(K, N). The larger is I(K, N), the more effectively the receiver learns

about the state θ through the messages disclosed by the sender.8

As illustrated by the next result, changes in K and N generate rich comparative statics in the

equilibrium informativeness, which we exploit in our experimental analysis.

8This measure is a monotone transformation of the receiver’s ex-ante expected payoff. See Appendix C for
more details.
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Proposition 1. As K and N vary, equilibrium informativeness I(K, N) changes as follows:

1. Fixing N, I(K, N) increases in K.

2. Fixing K = N, I(K, N) increases in N.

3. Fix K and suppose that, for all θ, f (·|θ) has full support. I(K, N) converges to zero as

N → ∞. Moreover, I(K, N) need not be monotonic in N.

We briefly discuss the intuition for these results. First, when N is fixed and K increases, it

is more likely that, for a given θ, the sender can send messages that lower-state senders can-

not imitate, allowing for more separation. This implies that more information is transmitted

in equilibrium, leaving the receiver less uncertainty about the state. Second, when K = N,

the maximally selective equilibrium involves disclosing all available signals. This means the

sender discloses signals that are not selected. Thus, as N grows, more i.i.d. signals are dis-

closed to the receiver, which increases equilibrium informativeness. Third, as the number of

available signals approaches infinity, the full support assumption implies that for every state θ,

with probability close to one, the sender can disclose the most favorable message. This implies

that there is no separation among different θ’s in equilibrium and, consequently, no possibility

for the receiver to learn.

The intuition behind the non-monotonicity in the last result of Proposition 1 is perhaps more

subtle. An increase in N generates two contrasting effects that can change informativeness

in opposite directions. On the one hand, it is more likely that the sender has the best signal

available, no matter the state θ. This leads to more pooling and, thus, lower informativeness.

We can think of this as the “imitation effect.” On the other hand, a higher N increases the

probability that higher states can separate themself, making worse signals stronger evidence

that the state is low. This increases equilibrium informativeness. We can think of this as a

“separation effect.” When f (·|θ) is full support, these effects are present simultaneously, and

which one prevails determines how the amount of information transmitted is affected by N.

In Appendix D, we present a simple example that isolates the imitation and separation effects,

providing intuition as to why, in general, equilibrium informativeness need not be monotone in

N.9

9Di Tillio et al. (2021) characterize sufficient conditions on f under which one effect or the other dominates
and, thus, equilibrium informativeness I(K, N) is monotone in N. Their setting is close to ours but differs in that
they assume S is infinite.
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Ball Label

Urn Color s = A s = B s = C s = D

Yellow (θ = 0) 10% 20% 25% 45%
Red (θ = 1) 45% 25% 20% 10%

Table 1: The distribution f (s|θ) used in the experiment.

3 Experimental Design

This section describes the laboratory implementation of our model and our design choices.

In the laboratory, we implement a simple instance of the model described in Section 2.1,

with a binary state and four possible signal realizations. We use unframed and nontechnical

language. There is an urn that can be red (i.e., θ = 1) or yellow (i.e., θ = 0) with equal

probability. They both contain balls labeled with four different letters, S = {A, B, C, D},

representing the possible signal realizations. The composition of each urn depends on its color,

as shown in Table 1. As in the theory, the distribution f (s|θ) has full support and satisfies

MLRP, furthermore it is symmetric.

The interaction between the sender and the receiver unfolds as follows. The sender privately

observes the color of the urn and a set of N balls drawn randomly from the urn with replace-

ment. She then discloses up to K of these balls to the receiver. In the second stage, the receiver

observes the balls selected by the sender and takes an action a ∈ [0, 1], which we refer to as

the receiver’s guess. The sender and the receiver earn points that are converted into cash at the

end of the experiment. Given a, the sender earns 100 points. The receiver, instead, earns either

0 points or 100 points, depending on her guess a and the underlying state θ. The probability

of winning 100 points increases with the accuracy of her guess a, incentivizing the receiver to

truthfully report her subjective belief that θ = 1. The details of this belief elicitation are de-

scribed below.

At the beginning of each session, instructions are read aloud and the recruited subjects play

two practice rounds to familiarize themselves with the game and the graphical interface (see

Appendix F.2 and F.1). They are randomly assigned a fixed role—sender or receiver—and play

30 rounds of the game in that role. Sender and receiver pairs are randomly rematched in each

round. At the end of every round, subjects are presented with the same feedback: the state, the

signals available to the sender, the message, the receiver’s guess, and their respective payoff.

We conducted six treatments that only differ in the values of K and N, with four sessions

10



Table 2: Our 2x3-factorial design and the treatments’ denominations.

N = K N = 10 N = 50

K = 1 (K1, N1) (K1, N10) (K1, N50)

K = 3 (K3, N3) (K3, N10) (K3, N50)

0

1

N

I(K, N)

501031

K = 3
K = 1

0.70

0.85

0.24

0.48
0.45

0.05

Figure 1: Equilibrium Informativeness

per treatment. The chosen combinations of K and N are reported in Table 2: K is either 1 or 3

and, for each K, N is either K, 10, or 50. Figure 1 reports the specific treatment predictions of

I(K, N) under this implementation. Notice that this choice of treatments allows us to test all

the predictions listed in Proposition 1.

Population. An average of 17.25 subjects participated in each session, ranging from a mini-

mum of 12 to a maximum 24. In total, 414 subjects participated in our experiment, with each

one of them participating in a single treatment (a “between-subject” design). Subjects were

students recruited from the undergraduate populations at Columbia University and New York

University in Spring 2023. Two sessions per treatment were conducted at the laboratory facili-

ties of each institution.10

Earnings. On average, a session lasted 75 minutes and each subject earned $30.51 (from a

minimum of $18.41 to a maximum of $37.66), which includes a $10 show-up fee. During the

experiment, subjects received a payoff in points that were converted into cash at the end of the

experiments. The conversion rate was $1.20 for 100 points for senders and $0.90 for 100 points

for receivers. The different conversion rates aimed at minimizing the differences in expected

10The experimental interface was designed with the software oTree (Chen et al., 2016). Subjects were recruited
at New York University using hroot (Bock et al., 2014) and at Columbia using ORSEE (Greiner, 2015).
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payoffs between the two roles.

Belief elicitation. Since the state is binary, the receiver’s quadratic payoff makes her task

equivalent to a belief elicitation via the quadratic scoring rule (Brier, 1950). Previous literature

has shown that the quadratic scoring rule can lead to biased guesses in the lab when subjects

are not risk-neutral. To avoid these well-known issues, we do not incentivize the receivers with

a quadratic payoff but use instead a binarized scoring rule. This rule determines the likelihood

that a receiver wins 100 points based on their guess and the realized state.11

Measuring Informativeness in the Data. The correlation between the realized state and the

observed receiver’s action combines both sender and receiver behavior. When appropriate, to

isolate the informativeness of the senders’ strategies—i.e., to net out receivers’ mistakes—we

compute the correlation between the state and the guess of an idealized Bayesian receiver who

optimally responds to senders’ average behavior in the session. We call the resulting measure

the Bayesian informativeness of the senders’ strategies and denote it by IB(K, N). An identical

decomposition technique is used in Fréchette et al. (2022).

Statistical Tests and Predictions. Our data analysis focuses on the last 15 rounds to allow

time for learning.12 Unless stated otherwise, our tests include subject specific random-effects

and cluster standard errors at the session level (see Fréchette (2012) and Online Appendix A.4.

of Embrey et al. (2018) for a discussion of issues related to hypothesis testing for experimental

data). Additionally, when comparing data against theoretical predictions, we compute the pre-

dictions by taking into account the small-sample nature of our data. That is, the prediction con-

sists of the behavior of an agent who plays the equilibrium strategy given the observed sample.

4 Results

We organize our results into two subsections. Section 4.1 focuses on senders’ behavior. We

study what evidence they select to disclose (Section 4.1.1), how much information they trans-

mit to receivers (Section 4.1.2), and what strategies are played more often (Section 4.1.3). Sec-

tion 4.2 focuses on receivers’ behavior. We study how they respond to selected evidence (Sec-

tion 4.2.1), we find selection neglect in high-N treatments (Section 4.2.2), and document its

consequences for overall communication informativeness (Section 4.2.3).

11Incentive compatibility of the binarized scoring rule is independent of a subject’s risk attitude (Allen, 1987;
McKelvey and Page, 1990; Schlag et al., 2015; Hossain and Okui, 2013). We use the implementation outlined in
Wilson and Vespa (2018). See also Danz et al. (2022).

12See Fréchette et al. (2024) for a discussion of this choice, which is common in experimental economics.
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4.1 Senders’ Behavior

4.1.1 What Evidence Do Senders Disclose?

We begin by testing a key comparative static of our model: What evidence do senders disclose,

and how does this disclosure change as K and N change? Remark 1 predicts that, for a fixed

K, the evidence disclosed should appear more favorable as N increases. Conversely, for a fixed

N, the evidence disclosed should appear less favorable as K increases. The former prediction

is driven by the fact that, when N is larger, the sender can choose K pieces of evidence from

a larger pool. This opportunity allows the sender to be more selective, resulting in messages

that appear more favorable. The latter prediction is driven by the fact that when K is larger, the

sender must disclose more evidence. This forces the sender to become less selective, resulting

in messages that appear less favorable.

There are several ways in which we can test these predictions. A particularly convenient

one, both analytically and for data visualization, is to map each message into a single number,

its implied grade point average (GPA). Just as in the case of school transcripts, we assign a

numerical value to each signal that is disclosed and average them. In particular, we assign

A = 4, B = 3, C = 3, and D = 1. Consistent with equilibrium reasoning, we assign a

missing signal the value of a D. For example, when K = 3, a message m = ABC would result

in a GPA of 3.13

In Table 3, we report the mean GPA (MGPA) computed at the treatment level. In Figure 2,

we report the cumulative distribution function (CDF) of sender-level MGPAs. Both also report

the associated theoretical predictions. We emphasize the following three results.

First, as predicted, the MGPA increases in N for each K. When K = 1, the treatment-level

MGPA increases from 2.31 for N = 1 to 3.61 for N = 50. Similarly, when K = 3, the

treatment-level MGPA increases from 2.27 for N = 3 to 3.54 for N = 50. Both increases are

significant at the 1% level. These treatment effects also hold across the distribution of MGPA

computed at the sender’s level, rather than at the treatment level. Figures 2a and 2b show a

first-order stochastic dominance increase in the distribution of sender-level MGPAs when N

increases from K to either 10 or 50. For both K’s, the differences between N = 10 and N = 50

are small; these differences are also predicted by the theory to be relatively small (see Figures

13By mapping messages into GPAs we reduce the high-dimensional and partially-ordered set of messages into
the real line. This is especially convenient for treatments with K = 3. The choice of coding a missing signal as a
1 is somewhat arbitrary. Our results are robust to alternative coding choices: for example, coding it as a 0 (i.e., a
grade lower than a D) or as a 2.5 (i.e., the prior grade). The qualitative results presented in this subsection hold
beyond the GPA. Appendix E.1 reports the full distribution of signals disclosed and how it changes in K and N.
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Table 3: Mean GPA induced by senders’ messages (predicted values shown in parenthesis)

N = K N = 10 N = 50

K = 1
2.31 3.63 3.61
(2.57) (3.83) (4.00)

K = 3
2.27 3.24 3.54
(2.52) (3.52) (3.98)

2c and 2d).

Second, as predicted, the MGPA decreases in K for N = 10. As reported in Table 3, the

treatment-level MGPA decreases from 3.63 to 3.24 as K increases from 1 to 3 (p-value <

0.01). Additionally, by comparing Figures 2a and 2b, we see a first-order stochastic dominance

decrease in the distribution of sender-level MGPAs between these two treatments.

Overall, these first two sets of results corroborate the theory and are a manifestation of se-

lective disclosure. As N increases, senders can cherrypick their signals, leading to higher MG-

PAs. Conversely, as K increases, equilibrium forces compel senders to disclose more evidence,

reducing their ability to be selective and resulting in lower MGPAs.

The third result is that there are some sizable quantitative differences between the theoretical

predictions and the quality of evidence senders disclose in our data. Across all treatments,

we find that senders induce MGPAs that are lower than those predicted by the theory. This

is true both at the treatment level (Table 3) and at the sender level (Figures 2). We call this

underreporting a modesty bias. Additionally, the distributions reveal that senders’ behavior is

more heterogeneous than predicted.14 We will discuss this in more detail below.

14Note that the predictions in the bottom panels of Figure 2 display some heterogeneity. This is due to the ran-
domness of the senders’ available signals. Therefore, given any finite sample, two senders playing the equilibrium
strategy may not induce the same MGPAs.
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(d) K = 3, Predictions
Figure 2: CDFs of Senders’ Message GPAs: Data and Predictions

Before proceeding, we briefly discuss the last prediction in the first bullet of Remark 1,

which describes an immediate implication of the maximally-selective equilibrium: In theory,

the number of disclosed signals should increase in K and be independent of N. Table 4 reports

the average number of signals disclosed by the senders in the various treatments. We emphasize

two aspects of this table. First, in treatments (K1, N1) and (K3, N3), the number of signals

disclosed is significantly smaller than K (p-value < 0.01). This result is in line with one of

the prominent findings from the existing experimental literature on verifiable disclosure (e.g.,

Jin et al., 2021): When there are no selection opportunities, i.e., K = N, senders do conceal

evidence, especially when it is unfavorable, in contrast with the equilibrium predictions. The

second aspect that we would like to emphasize is that the number of disclosed signals increases
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Table 4: Average number of signals disclosed (predicted values shown in parenthesis)

N = K N = 10 N = 50

K = 1
0.66 1 1
(1) (1) (1)

K = 3
1.89 2.85 2.92
(3) (3) (3)

in N (p-value < 0.01 for the changes from N = K to N > K; changes between N = 10

and N = 50 are not statistically significant). That is, selection trumps concealment: When

selection opportunities are large, the concealment of evidence virtually disappears.

4.1.2 How Much Information Do Senders Transmit?

Next, we discuss how much information senders transmit. As discussed in Section 3, we

quantify this in terms of the Bayesian informativeness IB(K, N), which is the correlation

between the state and the guess of an idealized Bayesian receiver.

Table 5 reports the average IB(K, N) for all treatments.15 We find that, for all treatment

variations of K and N, the average Bayesian informativeness moves in the directions predicted

by the theory. Next, we highlight the most important comparisons.

First, Proposition 1(a) and Figure 1 predict that, when fixing N, increasing K from 1 to 3

should increase Bayesian informativeness and that this increase should be large for N = 10 and

small for N = 50. Accordingly, the data exhibit a large and significant increase for N = 10,

from 0.43 to 0.82 (p-value < 0.01), while only a non statistically significant one for N = 50,

from 0.38 to 0.39.

Second, as predicted by Proposition 1(b), we find that Bayesian informativeness significantly

increases from 0.46 in (K1, N1) to 0.73 in (K3, N3) (p-value < 0.01).

Third, Proposition 1(c) predicts that an increase in N should eventually decrease Bayesian

informativeness for both K’s. Accordingly, the average Bayesian informativeness decreases

from 0.73 to 0.39 for K = 3 and from 0.46 to 0.38 for K = 1. The former treatment effect is

significant at the 1% level. The latter effect, instead, is only weakly significant (p-value of the

one-sided test < 0.10).

15The values reported in Table 5 are derived by computing the correlation between the state and the guess of an
idealized Bayesian receiver at the treatment level. To perform the statistical tests reported in the section we use,
instead, correlations computed at the sender’s level.
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Table 5: Bayesian informativeness IB(K, N) of senders’ strategies (predicted values shown in
parenthesis)

N = K N = 10 N = 50

K = 1
0.46 0.43 0.38
(0.44) (0.38) (0.06)

K = 3
0.73 0.82 0.39
(0.69) (0.84) (0.22)

Finally, the theory predicts that informativeness should not be monotonic in N if K = 3.

Accordingly, we find that increasing N from 1 to 10 decreases the average Bayesian informa-

tiveness from 0.46 to 0.43 for K = 1 but increases it from 0.73 to 0.82 for K = 3. Although

the point estimates move in the direction predicted by the theory, these changes are not always

statistically significant. In particular, the decrease when K = 1 is not significant, while the in-

crease when K = 3 is significant at the 5% level, although the p-value of this test is sensitive

to the exact specification.16 To summarize, there is no case in which the prediction of the the-

ory is rejected, and in the majority of cases, the predictions are in line with the theory.

To summarize, our findings indicate that senders transmit information in ways that qualita-

tively align with the theory’s predictions. This alignment suggests that the theory effectively

captures the key tensions in how selective disclosure shapes senders’ behavior. However, quan-

titatively, we observe a substantial deviation from the theory, with senders overcommunicating,

especially for large N. This contrasts with prior results in the literature on disclosure, both in

the lab and in the field, that find that senders undercommunicate.17 These prior results show

that the unraveling principle often fails: senders communicate less than the theory predicts.

One important difference from our setting is that, in these papers, informativeness is predicted

to be maximal, i.e., using our notation, I(K, N) = 1. This is due to the rich evidence structure

used by these studies. As such, these studies cannot uncover overcommunication, since any de-

parture from the theory (even noisy behavior) would lead to undercommunication. In contrast,

in our setting, full information transmission is not an equilibrium outcome. This is because

the evidence structure available to senders is constrained: for example, when K < ∞, senders

cannot communicate θ, even if they want to. This constraint leads to an interior prediction for

16The robustness of these results is confirmed through a bootstrapping procedure. For each treatment, we
generate 1000 random subsamples and we compute the Bayesian informativeness in each of them. This allows us
to compare the resulting vectors of correlation through a standard t-test procedure and assess whether a significant
difference can be detected.

17For instance, see Forsythe et al. (1989), Jin and Leslie (2003) Jin et al., 2021, Fréchette et al. (2022). An
exception is de Clippel and Rozen (2020), who also find evidence of over-communication.

17



I(K, N), allowing for the possibility of observing either over- or under-communication, de-

pending on the sender’s behavior. This feature is crucial as it enables nontrivial comparative

statistics and allows the theoretical predictions to fail in both directions

4.1.3 Explaining Senders’ Overcommunication

The previous section documents either average behavior close to equilibirum or overcommu-

nication, depending on the treatment. Such behavior could be representative of individual be-

havior, or could hide systematic heterogeneous behavior where some subjects under or over-

communicate. In this section, we analyze the heterogeneity in senders’ behavior and relate it

to the deviations identified so far.

There are challenges in studying senders’ heterogeneity, especially in a way that can be

easily visualized. First, the sender’s strategy space is large. Second, we only observe part of the

senders’ strategy, namely what message is sent given the signals available. We do not observe

what message would have been disclosed had the sender obtained a different set of available

signals.18 Third, some key features of behavior often vary across treatments: for instance, in

some treatments, concealment is important, while in others it is not; furthermore, selection

only matters if N > K. These challenges both complicate the inference of the sender’s strategy

from the observed data and the comparisons across treatments.

To address these challenges, we introduce the GPA gap: the difference between the GPA of

the message sent by the sender and the GPA of the equilibrium message. For each sender, we

calculate the conditional mean gap, i.e., the mean gap conditional on the state (high or low).

Then, using a k-means algorithm, each sender’s strategy is classified along two dimensions: the

high-state conditional mean gap and the low-state conditional mean gap. This approach allows

us to bypass the issues discussed above. First, the sender’s strategy is summarized in a much

lower dimension, namely, the mean GPA gap conditional on each state. Second, these measures

are only partially affected by the randomness of the signals because the gap is computed by

using a benchmark, the equilibrium GPA, which also depends on the realized signals. Lastly,

the procedure can be applied consistently for all treatments.19

We cluster senders’ strategies into three groups. We interpret the clusters as representing

different styles of play. For each cluster, we compute the average frequency with which each

18Eliciting the sender’s strategy using the “strategy method” is impractical in this setting.
19As a robustness check, we can cluster senders strategies directly on the strategy space. This approach leads

to qualitatively similar results. This procedure, however, is rather data-intensive and leads to less stable estimates,
especially for treatments with low N.
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Figure 3: Sender’s Clustering for the Treatment (K1, N50)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y 
of

 S
ig

na
ls

A B C D Empty

71.43 %: 25 subjects

0.0

0.2

0.4

0.6

0.8

1.0

A B C D Empty

High State

11.43 %: 4 subjects

0.0

0.2

0.4

0.6

0.8

1.0

A B C D Empty

17.14 %: 6 subjects

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y 
of

 S
ig

na
ls

A B C D Empty

Induced Correlation: 0.476 
 Average Payoff: 64.76

0.0

0.2

0.4

0.6

0.8

1.0

A B C D Empty

Low State

Induced Correlation: 0.431 
 Average Payoff: 41.217

0.0

0.2

0.4

0.6

0.8

1.0

A B C D Empty

Induced Correlation: 0.896 
 Average Payoff: 50.978

Figure 4: Sender’s Clustering for the Treatment (K3, N50)

signal is sent, conditional on the state.20 These averages represent the typical strategy played

in this cluster. For each cluster, we also compute the average Bayesian informativeness as well

as the associated payoff that senders playing such strategies earned in the experiment. Overall,

this provides a comprehensive view of senders’ behavior: what strategies they played, and how

informative and profitable they were.

Figure 3 reports the outcome of our clustering analysis for treatments with N = 50. The

patterns emerging from these two treatments are broadly representative of what we find in

the other treatments (see Appendix E). Our emphasis on large-N treatments is motivated by

20Specifically, for each cluster, the average frequency of disclosing signal s in state θ is computed as follows.
For each strategy in the cluster, we count the number of signals s that have been disclosed and divide it by K,
namely, the number of disclosable signals. We then average the resulting number across all strategies in the
cluster. This procedure provides us with a distribution of disclosed signals for each cluster. This is a convenient
way of summarizing the typical strategy in the cluster.
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the fact that the deviations documented in Sections 4.1.1 and 4.1.2 appear strongest for those

treatments.

In both treatments, the largest cluster, capturing about 58% and 71% of the senders, respec-

tively, displays behavior that is close to equilibrium. Strategies in this cluster overwhelmingly

disclose the best available signals in both states. In both treatments, senders in this cluster earn

the largest payoff and induce a low informativeness.21

Although many senders play strategies consistent with equilibrium behavior, a minority de-

viate from it. There is one type of deviation that appears in all treatments. In Figure 3, this

deviation is represented by cluster #3, which captures about 17% of the senders in both treat-

ments. This cluster displays behavior that we interpret as deception-averse. These senders dis-

close the best available signal in the high state, but fail to do so in the low state. Instead, in

those cases, they predominantly disclose the worst signal, i.e., a D. In both treatments, senders

in this cluster induce the highest informativeness. The differences from the equilibrium-like

cluster are particularly stark. For example, in treatment (K = 1, N = 50), the Bayesian in-

formativeness is 0.177 in the equilibrium cluster, whereas it is 0.746 in the deception-averse

cluster. Additionally, senders in the deception-averse cluster earn a payoff that is 22% to 27%

lower than that earned by senders in the equilibrium-like cluster. These qualitative patterns

hold in the other treatments as well.

Deception aversion is related to lying aversion. However, there are some important differ-

ences. For instance, in our setting, senders cannot lie: Since disclosed signals are verifiable, all

the information they convey to the receivers is true. However, they can choose to vary the type

of signals they disclose (or not) depending on the realization of the state, thereby potentially

conveying more information than is predicted in equilibrium.

The third cluster (middle panel) is best thought of as a residual cluster. It presents behavior

that varies somewhat between treatments. In some treatments, such as those displayed in Figure

3, the behavior is somewhere between equilibrium and deception aversion. These senders

disclose the best signals in the high state but intermediate signals in the low state. Senders

in this residual cluster earn payoffs and induce Bayesian informativeness that are in between

those of the other two clusters.22

21In the data as a whole, 24% of senders play exact equilibrium strategies in all of the last fifteen rounds, while
56% of the senders do so in at least 80% of these rounds.

22In other treatments, this cluster seems to represent senders whose behavior appears to display some degree of
confusion.
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4.1.4 Summary and Interpretation of Senders’ Behavior

In summary, we find strong evidence that the senders engage in selective disclosure. This

behavior affects what evidence they disclose and how informative their strategies are in ways

that are qualitatively consistent with the theory.

We documented three main departures from the theory. First, senders show a modesty bias,

i.e., they disclose worse evidence than predicted. Second, they overcommunicate, i.e., they

convey more information than predicted. Third, our clustering analysis reveals a group of

senders is deception-averse: They disclose the best available signals in the high state but re-

frain from doing so in the low state. These three departures are connected. In particular,

the deception-averse senders drive the modesty bias, as they fail to disclose the highest avail-

able evidence when the state is low, thus lowering the average MGPA. Moreover, the state-

dependent nature of the deception-averse strategy implies that these senders communicate more

information than predicted, leading to overcommunication.

4.2 Receivers’ Behavior

4.2.1 How Do Receivers Respond to Selected Evidence?

We now discuss receivers’ behavior, starting with a key prediction. For any fixed message m,

the receiver’s guess should decrease as N increases. This is because receivers should anticipate

that senders become more selective with larger N.

This prediction is strongly borne out in the data. Before diving into a structured analysis

of this prediction, we start with a simple test. A receiver who observes message m = A in

treatments with K = 1 should respond more skeptically when N = 50 than when N = 1.

To quantify this comparison, we introduce the empirical optimal guess, which is the receiver’s

best response to the senders’ observed strategies.23 We use the empirical optimal guess as the

benchmark against which to evaluate the observed receivers’ guesses. Due to senders’ selective

disclosure, the empirical optimal guess decreases from 83.9 in treatment (K1, N1) to 57.2 in

treatment (K1, N50). The observed receivers’ guess shows a similar qualitative pattern: On

average, there is a large decrease from 82.0 in (K1, N1) to 64.5 in (K1, N50) (p-value < 0.01).

To provide more systematic evidence of the receivers’ responses to changes in N, we esti-

23Specifically, the empirical optimal guess given a message m is E(θ|m) = Pr(1|m), i.e. the fraction of times
message m was sent when θ = 1 by any sender. We compute this by using data at the treatment level. Our results
in this section are robust to computing the empirical optimal guess at the session level.
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Table 6: Regression Results of Receivers’ Responses for each K

K = 1 K = 3

(1)
Receiver’s

Guess

(2)
Empirical

Optimal Guess

(3)
Receiver’s

Guess

(4)
Empirical

Optimal Guess

GPA 15.33∗∗∗ 19.46∗∗∗ 26.59∗∗∗ 32.94∗∗∗

(0.91) (0.96) (2.21) (2.55)

DN10 −18.67∗∗∗ −29.22∗∗∗ −24.72∗∗∗ −30.92∗∗∗

(2.69) (1.91) (2.95) (2.91)

DN50 −17.04∗∗∗ −25.84∗∗∗ −28.16∗∗∗ −43.12∗∗∗

(2.20) (1.43) (3.00) (3.28)

Constant 19.08∗∗∗ 2.91 −6.28 −25.92∗∗∗

(1.98) (2.50) (5.18) (5.81)

Obs 1, 545 1, 545 1, 560 1, 560
Subjects 103 103 104 104

Robust standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.10

mate the following regression model:

ai,m = β0 + β1GPAm + β2DN10 + β3DN50 + εi,m, (1)

where ai,m is the guess of receiver i to message m, GPAm is the induced GPA of the message,

and DN10 and DN50 are dummies that equal 1 if N = 10 or N = 50, respectively. We

estimate this model separately for K = 1 and K = 3. The dummy coefficients capture how

much the receivers’ guess decreases compared to the benchmark cases of N = K. Note that

we control for the GPA of a message rather than the messages themselves. We do so because,

for treatments with K = 3, some messages are only rarely used and asymmetrically so across

treatments. The GPA circumvents this issue.24

Table 6 reports the results of the regression. For both Ks, the dummy coefficients are strongly

significant. As N increases, receivers become more skeptical of messages with the same GPA,

as predicted by the theory. For K = 1, the average guess decreases by 18.67 points from N = 1

24We report the OLS estimates here for ease of exposition, however, the results are robust to considering dif-
ferent regression models (i.e., Tobit) and specifications (e.g., replacing the GPA with the message as a regressor).
Additionally, we obtain qualitatively similar results if we use a nonparametric approach to estimate the receivers’
responses. See Appendix E.2.1 for details.
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to N = 10 and by 17.04 points from N = 1 to N = 50. For K = 3, it decreases by 24.72

points from N = 3 to N = 10 and by 28.16 points from N = 3 to N = 50. These effects are

significant at the 1% level.

Table 6 also reports the treatment effects that we should have observed had receivers best

responded to our senders. We do so by replacing the dependent variable in the regression

model of Equation 1 with the empirical optimal guess. Comparing the estimated coefficients of

these regressions with those discussed before, we conclude that, while receivers become more

skeptical as predicted, they do not correct their responses as much as they should have. We

will come back to this point in the next subsection.

A second key prediction about receivers’ behavior consists of stuyding how they respond to

messages with the same GPA when we fix N and increase K (rather than the opposite). To fix

ideas, consider receving a message with a GPA of 4 in treatments (K1, N10) and (K3, N10).

Intuitively, messages are more selected in the former treatment than in the latter. Therefore,

receivers should be less skeptical of a message with the same GPA as K increases. To test this,

for each N ∈ {10, 50}, we regress the receiver’s guess on a constant, the GPA of the observed

message, and a dummy variable DK3 that equals 0 if K = 1 and 1 if K = 3.

Table 7 shows that the treatment effects are predicted to be large for N = 10 and small

for N = 50 (see columns (2) and (4)). Our data align qualitatively with these predictions.

For N = 10, the predicted treatment effect is positive and significant (at the 10% level). For

N = 50, this effect is small and insignificant.

Overall, these results corroborate some key qualitative predictions of the theory and demon-

strate that receivers account, at least directionally, for the fact that the evidence they observe

is differentially selected across the different treatments. Quantitatively, however, we also doc-

umented that receivers do not adjust as much as they should to changes in K and N. The next

subsection explores why.

4.2.2 The Failure to Fully Account for Selection

To better understand how receivers deviate from the theory, we compute the “response gap,”

which is the difference between a receiver’s guess and the empirical optimal guess. A positive

response gap indicates that the receiver has overestimated the state, while a negative gap indi-

cates underestimation.

Table 8a reports the average response gap by treatment. Two patterns stand out. First,

response gaps are significantly positive across the treatments (p-value < 0.01, except for
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Table 7: Regression Results of Receivers’ Responses for N = 10 and N = 50

N = 10 N = 50

(1)
Receiver’s

Guess

(2)
Empirical

Optimal Guess

(3)
Receiver’s

Guess

(4)
Empirical

Optimal Guess

GPA 23.90∗∗∗ 31.81∗∗∗ 16.09∗∗∗ 19.72∗∗∗

(3.34) (3.67) (1.62) (0.75)

DK3 8.40∗ 17.96∗∗∗ 3.43 1.66∗∗

(4.77) (3.08) (2.55) (0.72)

Constant −30.71∗∗ −71.14∗∗∗ −0.702 −23.87∗∗∗

(13.08) (14.56) (5.22) (2.91)

Obs 1, 005 1, 005 1, 065 1, 065
Subjects 67 67 71 71

Robust standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.10

(K3, N10), whose p-value is 0.09). This finding aligns with previous experimental results that

show receivers are often overly optimistic.25 Considering the complexity of the receiver’s task,

the magnitudes of these gaps appear moderate, although they conceal substantial heterogene-

ity (as we will discuss shortly).

Second, response gaps are small when N is small and increase as N rises, indicating greater

overoptimism with larger N. This is, perhaps, counterintuitive, as the receiver’s task becomes

arguably simpler as N grows. For instance, in treatment (K1, N50), a receiver observes the

same message (m = A) about 75% of the time over 30 rounds, and learns the outcomes ex-post

at the end of each round. This should in principle facilitate learning and reduce the response

gap relative to treatment (K1, N1), where the most common message (m = ∅) is only observed

33% of the time (m = A is observed roughly 25% of the time).

To investigate this unpredicted treatment effect, we regress the response gap on the same

covariates used in Equation 1. Table 8b reports the estimated coefficients. For all K, the

response gap increases with N, conditional on messages with the same GPA. These effects are

significant at the 1% level. We identify similar effects when comparing the CDF of receiver-

level response gaps between treatments with N = K and those with N = 50, while controlling

for the message distribution in treatments with N = 50. Figure 5 shows that, for all K, the

25E.g., see Cai and Wang (2006) and Jin et al. (2021). Section 1.1 reports a broader overview of the literature.
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Table 8: Comparison of Treatment Effects

(a) Average Response Gaps by Treatment

K = 1 K = 3

N = K 6.63 5.24

N = 10 11.73 5.25

N = 50 10.04 12.09

(b) OLS on Response Gaps

K = 1 K = 3

Gap Gap

GPA −4.13∗∗∗ −6.33∗∗∗

(1.34) (1.20)

DN10 10.56∗∗∗ 6.18∗∗∗

(2.47) (2.15)

DN50 8.81∗∗∗ 14.92∗∗∗

(2.65) (2.17)

Constant 16.18∗∗∗ 19.57∗∗∗

(2.94) (2.84)

Obs 1, 545 1, 560
Subjects 103 104

Robust standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.10

response-gap CDFs increase in a first-order stochastic sense as N increases from K to 50,

indicating that receivers become increasingly overoptimistic with larger N.

We attribute this unpredicted treatment effect to selection neglect, a bias documented, for

instance, by Enke (2020). Our results show that receivers are unable to fully account for the

fact that disclosed evidence becomes more selected as N increases. This leads receivers to be

insufficiently skeptical, as reflected by the response gap increasing in N.

To summarize, we provided evidence of selection neglect in a strategic communication set-

ting, where selection plays a crucial role. This bias persists despite ample learning opportuni-

ties for receivers in our treatments. Although existing literature has documented selection ne-

glect in non-strategic decision problems, our findings highlight its significance in a strategic

setting. Notice that, a priori, it is not obvious how selection neglect would transfer to a strate-

gic setting. On the one hand, the presence of strategic uncertainty could exacerbate the bias

by making the inference problem harder for the receiver. On the other hand, it could amelio-

rate the bias by making the selection forces more salient for the receiver, as they stem from a

sender with clearly conflicting preferences.
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Figure 5: CDF of Receivers’ Response Gaps

4.2.3 How Much Information Do Receivers Absorb?

We conclude by discussing how the overall informativeness of the communication between the

senders and the receivers changes across treatments. Recall that, in Section 4.1.2, we focused

on Bayesian informativeness IB(K, N), i.e., the correlation between the realized state and the

empirical optimal guess. This measure isolated the extent to which the senders transmit in-

formation to the receivers, net of the mistakes the latter may make in responding to it. In this

section, instead, we focus on overall informativeness, denoted by I(K, N). This is computed

as the correlation between the realized state and the actual receiver’s guess. The overall infor-

mativeness provides us with a comprehensive measure that tracks the amount of information

that is transmitted by the sender and absorbed by the receiver. Our main goal is to test whether

the documented presence of receivers’ mistakes invalidates the comparative statics discussed

in Section 4.1.2.

Table 9 reports the treatment-level informativeness across treatments. This table should be

compared with Table 5, discussed earlier.26 Predictably, I(K, N) ≤ IB(K, N): receivers’

mistakes only decrease overall informativeness relative to its Bayesian counterpart, because

these mistakes add noise that decreases the correlation with the state.

We emphasize three aspects of our findings from Table 9. First, for a fixed N, increasing

K should increase overall informativeness (Proposition 1(a)). The increase should be large for

26Again, the values reported in Table 9 are derived by computing the correlation between the state and the
guess at the treatment level. To perform the statistical tests reported in the section we use, instead, correlations
computed at the receiver’s level.
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Table 9: Informativeness I(K, N) in the data (predicted values shown in parenthesis)

N = K N = 10 N = 50

K = 1
I(K, N) 0.31 0.26 0.23

(0.44) (0.38) (0.06)

IB(K, N) 0.46 0.43 0.38

K = 3
I(K, N) 0.59 0.62 0.15

(0.69) (0.84) (0.22)

IB(K, N) 0.73 0.82 0.39

N = 10 and small for N = 50. Accordingly, the data shows a large increase for N = 10, from

0.26 to 0.62 (p-value < 0.01). For N = 50, the direction is the opposite of the one predicted

by theory and there is a non statistically significant decrease from 0.23 to 0.15.

Second, in line with Proposition 1(b), overall informativeness increases from N = K = 1,

when it is 0.31, to N = K = 3, when it is 0.59 (p-value < 0.01).

Third, as predicted by Proposition 1(c), increasing N from K to 50 reduces informativeness

from 0.59 to 0.15 when K = 3 and from 0.31 to 0.23 when K = 1. However, while the first

effect is significant at the 1% level, the latter is not.

Finally, when K = 3, the overall informativeness increases from N = 3 to N = 10 (from

0.59 to 0.62) but, in contrast with the prediction, the increase is never significant. Therefore,

despite senders transmitting more information (as discussed in Section 4.1.2), receivers do not

fully take advantage of it.
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Embrey, M., G. R. Fréchette, and S. Yuksel (2018): “Cooperation in the finitely repeated

prisoner’s dilemma,” The Quarterly Journal of Economics, 133, 509–551.

Enke, B. (2020): “What you see is all there is,” The Quarterly Journal of Economics, 135,

1363–1398.

Farina, A. andM. Leccese (2024): “Hiding a Flaw: A Lab Experiment on Multi-Dimensional

Information Disclosure,” Available at SSRN 4785923.

Farrell, J. (1993): “Meaning and credibility in cheap-talk games,” Games and Economic

Behavior, 5, 514–531.

Fishman, M. J. and K. M. Hagerty (1990): “The optimal amount of discretion to allow in

disclosure,” The Quarterly Journal of Economics, 105, 427–444.

Forsythe, R., R. M. Isaac, and T. R. Palfrey (1989): “Theories and tests of” blind bidding” in

sealed-bid auctions,” The Rand Journal of Economics, 214–238.

29



Forsythe, R., R. Lundholm, and T. Rietz (1999): “Cheap talk, fraud, and adverse selection in

financial markets: Some experimental evidence,” The Review of Financial Studies, 12, 481–

518.
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A Equilibrium Refinement

In this section, we formally define our main equilibrium concept, show that this can lead to

multiple equilibria, and then present our refinement that predicts a unique equilibrium outcome.

First, we define a pure-strategy, state-independent PBE in our framework. To do so, we

show that, when focusing on state-independent sender’s strategies, the receiver’s equilibrium

strategy can be pinned down by her beliefs on s̄. To see this, note that if µ(·|m) ∈ ∆(SN)

is the receiver’s belief about the vector s̄ conditional on observing message m, her posterior

belief p(·|m) ∈ ∆(Θ) about the underlying state is

p(θ|m) =
p(θ)∑s̄ µ(s̄|m) f (s̄|θ)

∑θ′ p(θ′)∑s̄ µ(s̄|m) f (s̄|θ′) ∀θ.

Moreover, given m and the associated belief µ(·|m), the receiver’s optimal action is unique

and deterministic, i.e the expectation of θ under p(·|m):

σR(m) = arg max
a∈A

∑
θ

u(a, θ)p(θ|m) = ∑
θ

θp(θ|m).

Denote by q(s̄) := ∑θ p(θ) f (s̄|θ) be the total probability of s̄ and, for any nonempty set

Q ⊆ SN, let q(s̄|Q) be the conditional probability of s̄ given that it belongs to Q, namely:

q(s̄|Q) :=


q(s̄)

∑s̄′∈Q q(s̄′) s̄ ∈ Q,

0 else.

Finally, for all θ and s̄, let E(θ|s̄) := ∑θ θp(θ|s̄). Therefore, given m and belief µ(·|m), the

receiver’s optimal action is ∑s̄′ µ(s̄′|m)E(θ|s̄′).

Definition A.1. A pure-strategy, state-independent PBE is a pair (σ∗ : SN → M; µ∗ : M →
∆(SN)) such that

1. For all s̄ ∈ SN and m′ ∈ M(s̄), ∑s̄′ µ∗(s̄′|σ∗(s̄))E(θ|s̄′) ≥ ∑s̄′ µ∗(s̄′|m′)E(θ|s̄′);

2. For all m ∈ σ∗(SN), µ∗(s̄|m) = q(s̄|σ∗−1
(m)) for all s̄.

Any pair (σ, µ) induces an outcome x : SN → A for the game, which is defined as

x(s̄) := ∑
s̄′

µ(s̄′|σ(s̄))E(θ|s̄′) ∀s̄.
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Despite the presence of verifiable information, the game can admit multiple PBE outcomes.

We provide two simple examples to show that it is possible to identify two pairs (σ, µ) that

induce different outcomes but that both satisfy Definition A.1.

Equilibrium 1. (Maximally selective equilibrium) Let N = 2 K = 1. Assume Θ = {0, 1}
(with equal probability), S = {0, 1}, f (1|1) = p > 1

2 and f (1|0) = q < 1
2 . We can show that

there is an equilibrium in which the sender always discloses the most favorable realization of s̄.

s̄ m = σ(s̄) a∗ = x(s̄)

1, 1 1 a∗(1)

1, 0 1 a∗(1)

0, 1 1 a∗(1)

0, 0 0 a∗(0)

where a∗(1) = E[θ|m = 1] = p2+2p(1−p)
p2+2p(1−p)+q2+2q(1−q) >

1
2 and a∗(0) = (1−p)2

(1−p)2+(1−q)2 < 1
2 .

This equilibrium is sustained by any a∗(∅) = 0. Notice that a∗(1) and a∗(0) are computed

using receiver’s beliefs consistent with Definition A.1, while the equilibrium conditions do not

constrain the choice of a∗(∅).

Equilibrium 2. (No disclosure equilibrium) Let N = 2 K = 1. Assume Θ = {0, 1} (with

equal probability), S = {0, 1}, f (1|1) = p > 1
2 and f (1|0) = q < 1

2 . We can show that there

is an equilibrium in which the sender always discloses m = ∅, no matter the realization of s̄.

s̄ m = σ(s̄) a∗ = x(s̄)

1, 1 ∅ a∗(∅)

1, 0 ∅ a∗(∅)

0, 1 ∅ a∗(∅)

0, 0 ∅ a∗(∅)

where a∗(∅) = 1
2 . This equilibrium is sustained by a∗(1) = a∗(0) = 0. Notice that a∗(∅) is

computed using beliefs that are consistent with Definition A.1, while a∗(1) and a∗(0) are not

constrained by any equilibrium condition.

Such multiplicity can constitute a challenge in our empirical analysis. For this reason, we

refine the set of PBEs using a notion of neologism proofness (see Farrell, 1993) that we adapt

to our setting with partially verifiably information. For any m ∈ M, define M−1(m) = {s̄ ∈
SN : m ∈ M(s̄)}, i.e. the set of signal realizations in SN that would allow the sender to

disclose message m.
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Definition A.2 (Refinement). Let (σ∗, µ∗) be a pure-strategy, state-independent perfect Bayesian

equilibrium. A neologism is a a pair (m, C) with m ∈ M and C ⊆ M−1(m). A neologism

(m, C) is credible if

(i) ∑
s̄′

q(s̄′|C)E(θ|s̄′) > ∑
s̄′

µ∗(s̄′|σ∗(s̄))E(θ|s̄′) for all s̄ ∈ C,

(ii) ∑
s̄′

q(s̄′|C)E(θ|s̄′) ≤ ∑
s̄′

µ∗(s̄′|σ∗(s̄))E(θ|s̄′) for all s̄ < C,

The equilibrium is neologism proof if no neologism is credible.

This refinement is a direct application of Farrell (1993)’s neologism proofness, adapted to

capture the fact that our setting features verifiable information.27 The literal meaning of the

neologism (m, C) is: “I am a sender who can send message m and my s̄ belongs to C.” Ver-

ifiability requires that C must be a subset of signals s̄′ that are compatible with m, namely

C ⊆ M−1(m).28 A neologism (m, C) is credible relative to the equilibrium if it is precisely

the types in C who benefit (strictly) from this neologism being believed over what they would

get in the putative equilibrium.

Next, we introduce a sender’s strategy that will play an important role in the equilibrium

characterization. Under this strategy, the sender discloses the K highest signals among those

that are available.

Definition A.3. Fix N and K. A sender’s strategy σ : SN → M is maximally selective if, for

each s̄, σ(s̄) selects the K highest signals in s̄.

We can show that all neologism-proof equilibria induce the same outcome, which is the one

induced by a maximally selective sender’s strategy.

Proposition 2 (Existence and Uniqueness). For all N and 1 ≤ K ≤ N, there exists a pure-

strategy, state-independent perfect Bayesian equilibrium in which the sender plays a maximally

selective strategy. The outcome of this equilibrium is the unique one induced by a neologism-

proof equilibrium. We refer to this equilibrium as the maximally selective equilibrium.
27Remember that, when K < N, our game features an element of cheap-talk communication. Like in cheap-

talk games, refinements such as the intuitive criterion or divinity have no force in our setting. These refinements
aim to discipline out-of-equilibrium beliefs. However, any equilibrium outcome in a cheap talk game can be
achieved with strategies that assign a positive probability to all messages, thereby leaving no room for restricting
beliefs. A similar challenge arises in our game, that can be equivalently formalized as one in which the sender
sends at most K verifiable messages and at least N − K unverifiable ones.

28For instance, if K = 1 and N = 2, s̄ = (1, 2) is not compatible with m = 3.
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B Proofs

Definition B.1. A collection of sets {Si}N
i=1 ⊆ S satisfies Property A if, for every i and every

s′, s′′ ∈ Si, {s ∈ S|s′ < s < s′′} ⊆ Si.

Lemma B.1. Let {Si}N
i=1 ⊆ S and {S′

i}N
i=1 ⊆ S satisfy Property A. If max S′

i ≥ max Si and

min S′
i ≥ min Si for all i, then

E(θ|s ∈ S′
1 × . . . × S′

N) ≥ E(θ|s ∈ S1 × . . . × SN).

Proof. Let {Si}N
i=1 ⊆ S and {S′

i}N
i=1 ⊆ S satisfy Property A. We shall denote S−i :=

∏j,i Si. The proof can be organized in N steps. In the first step, we fix an arbitrary index

i ∈ {1, . . . , N} and show that E(θ|s−i ∈ S′
−i, si ∈ S′

i) ≥ E(θ|s−i ∈ S′
−i, si ∈ Si).

To do so, fix ŝ−i ∈ S−i. We begin by showing that E(θ|s−i = ŝ−i, si ∈ S′
i) ≥ E(θ|s−i =

ŝ−i, si ∈ Si). There are two cases to consider. If max Si ≤ min S′
i, then

E(θ|s−i = ŝ−i, si ∈ S′
i) = ∑ŝi∈S′

i
Pr(ŝi|S′

i)E(θ|s−i = ŝ−i, si = ŝi)

≥ ∑ŝi∈S′
i
Pr(ŝi|S′

i)E(θ|s−i = ŝ−i, si = min S′
i)

= E(θ|s−i = ŝ−i, si = min S′
i)

≥ ∑ŝi∈Si
Pr(ŝi|Si)E(θ|s−i, si = ŝi)

= E(θ|s−i, si ∈ Si)

If max Si > min S′
i, instead, let C = Si ∩ S′

i. By Property A, C , ∅. Moreover, since

max S′
i ≥ max Si, max C = max Si and since min S′

i ≥ min Si, min C = min S′
i. There-

fore, max Si \ C ≤ min C ≤ max C ≤ min S′
i \ C. By similar steps as above, we have that

E(θ|s−i = ŝ−i, si ∈ S′
i \ C) ≥ E(θ|s−i = ŝ−i, si ∈ C) and, thus,

E(θ|s−i = ŝ−i, si ∈ S′
i)

= Pr(S′
i \ C|S′

i)E(θ|s−i = ŝ−i, si ∈ S′
i \ C) + Pr(C|S′

i)E(θ|s−i = ŝ−i, si ∈ C)

≥ E(θ|s−i = ŝ−i, si ∈ C).

A similar argument leads to E(θ|s−i = ŝ−i, si ∈ C) ≥ E(θ|s−i = ŝ−i, si ∈ Si). Therefore,
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E(θ|s−i = ŝ−i, si ∈ S′
i) ≥ E(θ|s−i = ŝ−i, si ∈ Si). Moreover, since ŝ−i ∈ S′

−i was arbitrary:

E(θ|s−i ∈ S′
−i, si ∈ S′

i) = Pr(s−i ∈ S′
−i|S′

−i)E(θ|s−i = ŝ−i, si ∈ S′
i)

≥ Pr(s−i ∈ S′
−i|S′

−i)E(θ|s−i = ŝ−i, si ∈ Si)

= E(θ|s−i ∈ S′
−i, si ∈ Si).

This completes the first step of the proof. The remaining N − 1 steps follow the same logic.□

Lemma B.2. Given posterior belief µ(·|m) ∈ ∆(SN), there is a unique posterior belief

p(·|m) ∈ ∆(Θ) defined as

p(θ|m) = ∑
s̄∈M−1(m)

p(θ|s̄)µ(s|m) ∀θ.

Proof. Fix θ and m. Then

p(θ|m) = ∑s̄∈M−1(m) p(θ|s̄)µ(s|m)

= ∑s̄∈M−1(m)

(
p(θ) f (s̄|θ)

µ(s̄)

)(
µ(s̄)σ(m|s̄)

∑s̄′∈M−1(m)
µ(s̄′)σ(m|s̄′)

)
=

p(θ)∑s̄∈M−1(m)
f (s̄|θ)σ(m|s̄)

∑s̄′∈M−1(m) ∑θ p(θ) f (s̄′|θ)σ(m|s̄′)

= p(θ)∑s̄ f (s̄|θ)σ(m|s̄)
∑θ′ p(θ′)∑s̄′ f (s̄′|θ′)σ(m|s̄′) =: p(θ|m)

The use of this result is that we can then define the equilibrium in terms of µ(·|m) rather

than p(·|m). □

Proposition 3. For all N and 1 ≤ K ≤ N, there exists a pure-strategy Perfect Bayesian

Equilibrium in which the sender plays the maximal selective strategy.

Proof. For any message m ∈ M, denote its length by ℓ(m) ∈ N. We construct an equilib-

rium in which the sender’s strategy σ∗ : SN → M reports the K most favorable signals in s̄.

That is,

σ∗(s̄) ∈ {m ∈ M(s̄) | ℓ(m) = K and |{s̄i ∈ {s̄1, . . . , s̄N} : si ≤ mK}| ≥ N − K + 1}.

In our candidate equilibrium, upon observing a message m, the receiver assigns a positive

probability to the following lists of signals:
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C(m) = {s̄ ∈ SN|∃ an injective ρ : {1, ..., ℓ(m)} → {1, ..., N} s.t.

if i ∈ ρ({1, . . . ℓ(m)}), s̄i = mρ−1(i); if i < ρ({1, . . . ℓ(m)}), s̄i ≤ h(m)},

where

h(m) =

{
mK ℓ(m) = K,

min s else.

By construction, when ℓ(m) = K, C(m) = σ⋆−1
(m). Instead, when ℓ(m) < K, m is off the

equilibrium path. In this case, C(m) only contains the most pessimistic s̄’s compatible with

the observed m.

Given this, the receiver equilibrium beliefs µ∗ : M → ∆(SN) are given by

µ∗(s̄|m) = q(s̄|C(m))

and they pin down the optimal action29

a∗(m) = ∑
θ

θ
p(θ)∑s̄ µ∗(s̄|m) f (s̄|θ)

∑θ′ p(θ′)∑s̄ µ∗(s̄|m) f (s̄|θ′) = E(θ|s̄ ∼ µ∗(·|m)) = E(θ|s̄ ∈ C(m))

We want to show that the pair (σ∗, µ∗) is a perfect Bayesian equilibrium. Conditions (2)

of Definition A.1 is satisfied by construction. Therefore, we only need to check condition (1).

Specifically, we need to show that, for all s̄,

E(θ|s̄ ∈ C (σ∗(s̄))) ≥ E(θ|s̄ ∈ C(m′)) ∀m′ ∈ M(s̄). (2)

To do so, it is convenient to first translate this problem into the space of ordered vectors O =

{s̄ ∈ SN|s̄1 ≥ . . . ≥ s̄N}. We show that restricting attention to O is without loss of generality.

We begin by specializing the definition of C(m) to O:

C̄(m) = {s̄ ∈ O|∀i ≤ ℓ(m) s̄i = mi and ∀i > ℓ(m) s̄i ≤ h(m)}.

Given any vector s̄ ∈ SN, denote the set of its permutations by

B(s̄) = {s̄′ ∈ SN|∃ an injective ρ : {1, ..., N} → {1, ..., N} s.t. s̄′i = s̄ρ(i)}

Note that, for every m, the collection {B(s̄)}s̄∈C̄(m) partitions C(m). Indeed, it is easy to see

29See Lemma B.2.
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that, for every s̄, s̄′ ∈ C̄(m) s.t. s̄ , s̄′, B(s̄) ∩ B(s̄′) = ∅ and C(m) =
⋃

s̄∈C̄(m) B(s̄). With

this, we can define the restriction of distribution f onto the subset of ordered vectors O. For

any s̄ ∈ O, let

f̄ (s̄|θ) = ∑
s̄′∈B(s̄)

f (s̄′|θ) = |B(s̄)| f (s̄|θ)

where the second equality follows from the exchangeability of f . Since

∑
s̄∈C(m)

f (s̄|θ) = ∑
s̄∈⋃

s̄∈C̄(m) B(s̄)
f (s̄|θ) = ∑

s̄∈C̄(m)
∑

s̄′∈B(s̄)
f (s̄′|θ) = ∑

s̄∈C̄(m)

f̄ (s̄|θ)

we have that
E(θ|C(m)) = ∑θ θ

p(θ)∑s̄∈C(m) f (s̄|θ)
∑θ′∈Θ p(θ′)∑s̄∈C(m) f (s̄′|θ)

= ∑θ θ
p(θ)∑s̄∈C̄(m) f̄ (s̄|θ)

∑θ′∈Θ p(θ′)∑s̄∈C̄(m) f̄ (s̄|θ′)

= E(θ|C̄(m))

Therefore, the equilibrium condition in Equation 2 holds if and only if

E(θ|C̄ (σ∗(s̄))) ≥ E(θ|C̄(m′)) ∀s̄ ∈ SN, m′ ∈ M(s̄).

To show this latter condition, fix s̄ ∈ SN and denote m = σ∗(s̄). Let m′ ∈ M(s̄) and, to avoid

trivial cases, assume m′ , m. That is, m′ does not contain the K-highest signals. Note that this

implies that,

mi ≥ m′
i for all i ≤ ℓ(m′). (3)

Indeed, if there was a i ≤ ℓ(m) such that m′
i > mi, then we could construct a m′′ from m and

m′ such that ℓ(m′′) = K and m′′
i ≥ mi, with at least one strict inequality, a contradiction.

Given m, define {Si}N
i=1, such that Si = {mi} for all i ≤ K and Si = {s ∈ S|s ≤ mK} for

i > K. Similarly, given m′, define {S′
i}N

i=1, such that S′
i = {m′

i} for all i ≤ ℓ(m′) and Si =

{s ∈ S|s ≤ h(m′)} for i > ℓ(m′). Note that E(θ|Ā(m)) = E(θ|s1 ∈ S1, . . . , sN ∈ SN) and

E(θ|Ā(m′)) = E(θ|s1 ∈ S′
1, . . . , sN ∈ S′

N). Therefore, the equililibrium condition in (2) is

equivalent to

E(θ|s1 ∈ S1, . . . , sN ∈ SN) ≥ E(θ|s1 ∈ S′
1, . . . , sN ∈ S′

N).

To prove this inequality, we will invoke Lemma B.1 after showing that its premises apply here.

Fix i ∈ {1, . . . , N} and note that Si is either a singleton or is {s ≤ h(m)}. In either case, if

39



s′, s′′ ∈ Si, then {s′ < s < s′′} ⊆ Si. Therefore, {Si}N
i=1 has Property A and, for a similar

argument, so does {S′
i}N

i=1.

Moreover, max Si ≥ max S′
i for all i. To show this, we consider two cases. First, suppose

ℓ(m′) < K. If i ≤ ℓ(m′), S′
i = {m′

i} and Si = {mi}. By (3), mi ≥ m′
i and thus max Si ≥

max S′
i. If i > ℓ(m′), then S′

i = {min S} and, thus, max Si ≥ mK ≥ min S = max S′
i. Next,

suppose that ℓ(m′) = K. For all i ≤ K, S′
i = {m′

i} and Si = {mi}. By (3), mi ≥ m′
i and thus

max Si ≥ max S′
i. If i > K, then max S′

i = m′
K and max Si = mK. By (3), mK ≥ m′

K and

thus max Si ≥ max S′
i. Similar steps as above can be followed to show that min Si ≥ min S′

i

for all i.

Therefore, we can invoke Lemma B.1 to conlcude that

E(θ|C̄ (σ1(s̄))) = E(θ|s1 ∈ S1, . . . , sN ∈ SN)

≥ E(θ|s1 ∈ S′
1, . . . , sN ∈ S′

N)

= E(θ|C̄ (m′)).

Since s̄ and m′ ∈ M(s̄) were arbitrary, this concludes the proof that there exists a perfect

Bayesian equilibrium in which the sender plays the maximal selective strategy. □

Remark 2. Our equilibrium is neologism proof.

Proof. Fix N and K and denote our equilibrium by (σ∗, µ∗). For a message m of length k,

we denote by B(m) the set of types s̄ whose k-best facts are those in m. Formally,

B(m) = {s̄ ∈ SN|∃ an injective ρ : {1, ..., ℓ(m)} → {1, ..., N} s.t.

if i ∈ ρ({1, . . . ℓ(m)}), s̄i = mρ−1(i); if i < ρ({1, . . . ℓ(m)}), s̄i ≤ mℓ(m)}.

Let’s denote with MK the set of messages that have length K. It is easy to show that {B(m)}m∈MK

partitions SN.

Observe that, if m ∈ σ∗(SN), σ∗−1
(m) = B(m) and ℓ(m) = K. Moreover, if s̄ ∈ B(m),

∑
s̄′

µ∗(s̄′|σ∗(s̄))E(θ|s̄′) = ∑
s̄′

q(s̄′|B(m))E(θ|s̄′) =: E(θ|B(m)).

Our equilibrium induces an order on MK = σ(SN) where

mi > mj if E(θ|B(mi)) > E(θ|B(mj))
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We want to show that no neologism is credible. Fix m ∈ M and C ⊆ M−1(m) and suppose

by contradiction it is credible. Trivially,30 there exists a m∗ ∈ MK such that C ∩ B(m∗) , ∅

and, for all other mj ∈ MK, such m∗ , mj and C ∩ B(mj) , ∅, we have E(θ|B(m∗)) >

E(θ|B(mj)).

Define the set

D(m, m∗) = {s̄ ∈ SN|∃ an injective ρ : {1, ..., N} → {1, ..., N} s.t. s̄1 ≥ ... ≥ s̄N,

∀i ≤ K s̄i ≤ m∗
i and ∀i > K s̄i ≤ m∗

K} ∩ M−1(m)

The following result characterizes C.

Claim 1. C = D(m, m∗).

⊆ direction. Let s̄ ∈ C but s̄ < D(m, m∗). By definition of neologism, s̄ ∈ M−1(m) given

C ⊂ M−1(m). This implies that for s̄ < D(m, m∗) it must be that

s̄ < {s̄ ∈ SN|∃ an injective ρ : {1, ..., N} → {1, ..., N} s.t. s̄1 ≥ ... ≥ s̄N,

∀i ≤ K s̄i ≤ m∗
i and ∀i > K s̄i ≤ m∗

K}

This implies that for at least one i ∈ {1, .., N}, si > m∗
1 . This means that is there is

m̄ > m∗ such that s̄ ∈ B(m̄) ∩ C. However, this contradicts the definition of m∗. Therefore,

s̄ ∈ D(m, m∗).

⊇ direction. Let s̄ ∈ D(m, m∗) and suppose s̄ < C. This implies that s̄ ∈ M−1(m).

Moreover, by the partition property, there is m̄ ∈ MK such that s̄ ∈ B(m̄) ∩ M−1(m). Since

s̄ ∈ {s̄ ∈ SN|∃ an injective ρ : {1, ..., N} → {1, ..., N} s.t. s̄1 ≥ ... ≥ s̄N,

∀i ≤ K s̄i ≤ m∗
i and ∀i > K s̄i ≤ m∗

K}

it must be that E(θ|B(m∗)) ≥ E(θ|B(m̄)). By Definition A.2 part (i), we must have

E(θ|C) > E(θ|B(m∗)) ≥ E(θ|B(m̄))

since we are assuming that the neologism is credible.

However s̄ < C and s̄ ∈ M−1(m) leads to a contradiction of part (ii) of Definition A.2. This

would imply that the neologism cannot be credible. Therefore, s̄ ∈ C. □

30Because of the partition argument and the fact that messages are totally ordered.
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The final step of the proof consists of showing this Claim:

Claim 2. E(θ|B(m∗)) ≥ E(θ|C).

To show this we use the previous Claim to replace C with D(m, m∗) and then we use Lemma

B.1. To see why the Claim is true it is sufficient to note that

B(m∗) = {s1 = m∗
1 , . . . , sK = m∗

K, sK+1 ≤ m∗
K, . . . , sN ≤ m∗

K}

whereas, D(m, m∗) has previously defined as containing only s̄ that “do not exceed” m, i.e.

whose ordered components are all weakly below the components of m. Invoking Lemma B.1

concludes the proof of Claim 2. □

Given Claim 2, we can immediately conclude that part (i) of Definition A.2 fails: (m, C)

is not credible and we reach a contradiction. This implies that our equilibrium is neologism

proof. □

Lemma B.3. Let MK := {m ∈ M|ℓ(m) = K}, m1 = maxMK and

B(m) = {s̄ ∈ SN|∃ an injective ρ : {1, ..., ℓ(m)} → {1, ..., N} s.t.

if i ∈ ρ({1, . . . ℓ(m)}), s̄i = mρ−1(i); if i < ρ({1, . . . ℓ(m)}), s̄i ≤ mℓ(m)}.

For all m ∈ M,

∑ q(s̄′|M−1(m))E(θ|s̄′) ≤ ∑ q(s̄′|M−1(m1))E(θ|s̄′) = ∑ q(s̄′|B(m1))E(θ|s̄′).

Proof. Let us begin by proving the equality. To so, we argue that M−1(m1) = B(m1). First,

note that

B(m1) = {s̄|m1 ∈ M(s̄), ℓ(m1) = K and m1 > m ∀ m ∈ M(s̄) s.t. ℓ(m) = K}

and

M−1(m1) = {s̄|m1 ∈ M(s̄)}

Direction ⊇. Suppose s̄ ∈ B(m1). Then m1 ∈ M(s̄), and thus s̄ ∈ M−1(m1).

Direction ⊆. Let s̄ ∈ M−1(m1). Then m1 ∈ M(s̄). However, m1 = maxMK and thus m1

will also be the highest message in M(s) with length K. So s̄ ∈ B(m1).

Therefore, M−1(m1) = B(m1). Next, we prove the inequality. Fix m ∈ M and let
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k = ℓ(m). Note that,

M−1(m1) = {s̄ : s1 = m11, . . . , sK = m1K, si ∈ S ∀i > K}

M−1(m) = {s̄ : s1 = m1, . . . , sk = mk, si ∈ S ∀i > k}

Since m1 is maximal and k ≤ K, it is easy to check that the conditions of Lemma B.1 are

satisfied and therefore the claimed inequality holds. □

Proposition 4 (Uniqueness). Let (σ∗, µ∗) our equilibrium and (σ, µ) any other NP equilib-

rium. Let x∗ and x be their respective outcomes. Then, x∗ = x.

Proof. Fix N and K. Let (σ∗, µ∗) be our equilibrium and (σ, µ) be any other NP equilibrium.

Denote by x∗ and x their respective outcomes. Let MK := {m ∈ M|ℓ(m) = K}. Note

that, for all m ∈ MK, σ∗−1
(m) , ∅, that is, m is sent with positive probability. We begin by

introducing an order on MK. For any m, m′ ∈ MK, denote m ≥ m′ if

∑
s̄′

µ∗(s̄′|m)E(θ|s̄′) ≥ ∑
s̄′

µ∗(s̄′|m′)E(θ|s̄′).

We can order the messages m1 ≥ m2 ≥ . . . ≥ mL, where L is finite, since MK is finite.

Define

B(m) = {s̄ ∈ SN|∃ an injective ρ : {1, ..., ℓ(m)} → {1, ..., N} s.t.

if i ∈ ρ({1, . . . ℓ(m)}), s̄i = mρ−1(i); if i < ρ({1, . . . ℓ(m)}), s̄i ≤ mℓ(m)}.

It is easy to see that {B(m)}m∈MK partitions S.

Step 1. We want to show that, ∀s̄ ∈ B(m1), x(s̄) = x∗(s̄).

We can argue that that m1 = maxMK. Assume by contradiction that this is not the case but

there exists m̂ > m1, i.e. m̂i ≥ m1i with at least one strict inequality. By Lemma B.1

∑
s̄′

µ∗(s̄′|m̂)E(θ|s̄′) > ∑
s̄′

µ∗(s̄′|m1)E(θ|s̄′)

contradicting the order we defined.

We begin by showing that x(s̄) ≤ x∗(s̄) ∀s̄ ∈ B(m1). Suppose not, i.e., there is s̄ ∈ B(m1)

such that x(s̄) > x∗(s̄). Let ŝ ∈ arg maxs̄∈SN x(s̄) and m̂ = σ(ŝ). That is, ŝ is the type that

induces the highest receiver’s action in equilibrium (σ, µ). Therefore, x(ŝ) ≥ x(s̄) > x∗(s̄).
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Because m̂ is the first best, each s̄ ∈ M−1(m̂) must send m̂ in equilibrium. Thus,

x(ŝ) = ∑ q(s̄′|M−1(m̂))E(θ|s̄′) > ∑ q(s̄′|B(m1))E(θ|s̄′) = x∗(s̄).

However, by Lemma B.3, we know that, for all m ∈ M, and in particular for m = m̂,

∑ q(s̄′|M−1(m̂))E(θ|s̄′) ≤ ∑ q(s̄′|M−1(m1))E(θ|s̄′) = ∑ q(s̄′|B(m1))E(θ|s̄′).

This is a contradiction. We conclude that x(s̄) ≤ x∗(s̄) ∀s̄ ∈ B(m1).

To establish the equality in the claim of this step, we need to show that x(s̄) ≥ x∗(s̄)

∀s̄ ∈ B(m1). Suppose not, that is ∃s̄ ∈ B(m1) such that x(s̄) < x∗(s̄). There are two possible

cases to consider.

− Suppose there is ŝ ∈ B(m1) such that x(s̄) < x(ŝ) = x∗(s̄).31 Denote by m̂ =

σ(ŝ) the equilibrium message sent by ŝ. Clearly, m̂ < M(s̄), otherwise s̄ would have a

profitable deviation and (σ, µ) would not be an equilibrium. Moreover, m̂ , m1, since

s̄ ∈ B(m1) ⇒ m1 ∈ M(s̄). By the previous step of this proof, we know that x(ŝ) is

the highest action that can be induced in (σ, µ). Therefore, every s̄ ∈ M−1(m̂) sends

m̂. Since m̂ , m1, M−1(m̂) , M−1(m1) = B(m1). Therefore, by Lemma B.3, for all

m ∈ M, and in particular for m = m̂

x(ŝ) = ∑ q(s̄′|M−1(m̂))E(θ|s̄′) < ∑ q(s̄′|M−1(m1))E(θ|s̄′)
= ∑ q(s̄′|B(m1))E(θ|s̄′) = x∗(ŝ)

The inequality is strict for m = m̂ since M−1(m̂) , M−1(m1).

− Therefore, it must be that x(s̄) < x∗(s̄), ∀s̄ ∈ B(m1). However, in this case, there is

a credible neologism, (m1, B(m1)). By assumption, all s̄ ∈ B(m1) strictly gain if the

neologism is believed, since x(s̄) < x∗(s̄). Moreover, B(m1) = M−1(m1) and thus no

other type can send m1. Therefore, (σ, µ) is not a NP equilibrium, a contradiction. □

Step k. Suppose that for all 1 ≤ k′ < k and s̄ ∈ B(mk′), x(s̄) = x∗(s̄) We want to show

that, ∀s̄ ∈ B(mk), x(s̄) = x∗(s̄).

The previous steps show that for all k′ ≤ k, all s ∈ B(mk′) achieve the same outcome in

the maximally selective equilibrium and in any neologism-proof equilibrium. Consider the set

Sk = SN \ ∪k−1
l=1 B(ml). We can argue that, for any s ∈ Sk, mi < M(s) for all i < k. Indeed,

31Note that x∗(ŝ) = x∗(s̄), since x∗ is constant within B(m) for all m.
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assume by contradiction that there exists s ∈ Sk such that mi ∈ M(s) for i < k. By the

ordering defined at the beginning of the proof

∑
s̄′

µ∗(s̄′|mi)E(θ|s̄′) ≥ ∑
s̄′

µ∗(s̄′|mk)E(θ|s̄′)

implying that s has a profitable deviation and (σ∗, µ∗) is not an equilibrium.

Given this observation, we can denote the new message space Mk
K = MK \ {m1, ..., mk−1}

where the previously defined order implies

mk ≥ mk+1 ≥ ...mL.

In addition, applying the same argument from Step 1, we can argue that mk = maxMk
K.

Given this premise, we can apply the same argument we used in Step 1 to show that x(s̄) =

x∗(s̄) for any s ∈ B(mk).

Since {B(m)}m∈MK partitions SN, we can conclude that any neologism proof equilibrium

generates the same outcome as the maximally selective equilibrium. □

Proof of Proposition 2. It directly follows from Proposition 3, Remark 2 and Proposition 4.□

Proof of Proposition 1. The proof is divided into three sections, each corresponding to a

different part of the statement.

1. Fix N and let (σ
′∗, µ

′∗) and (σ∗, µ∗) be the maximally selective equilibria for K′ and K,

respectively.

We first show that if K′ > K, then (σ
′∗, µ

′∗) is Blackwell more informative than (σ∗, µ∗).

Let P ′ = {σ
′∗−1

(m)}m∈σ
′∗(SN) and P = {σ

−1
(m)}m∈σ∗(SN).

Note that P ′ = {B(m)}m∈MK′ and P = {B(m)}m∈MK where

B(m) = {s̄ ∈ SN|∃ an injective ρ : {1, ..., ℓ(m)} → {1, ..., N} s.t.

if i ∈ ρ({1, . . . ℓ(m)}), s̄i = mρ−1(i); if i < ρ({1, . . . ℓ(m)}), s̄i ≤ mℓ(m)}.

and MK = {m ∈ M : ℓ(m) = K}.

Fix any X′ ∈ P ′. We want to show there is X ∈ P such that X′ ⊆ X, with at least

one strict inequality. By definition, there is m′ ∈ MK′
such that X′ = B(m′). Define

m = (m′
1, . . . , m′

K) ∈ MK and X = B(m). Clearly, B(m′) ⊆ B(m) and, thus, X′ ⊆ X.

Moreover, if m′ , min SK′
, B(m′) ⊊ B(m).
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By the Blackwell theorem, we can conclude that I(K′, N) > I(K, N). □

2. Fix K = N and K′ = N′ and let (σ
′∗, µ

′∗) and (σ∗, µ∗) be the maximally selective

equilibria for N′ and N, respectively. In both equilibria all the available signals are

disclosed. This implies that the beliefs µ
′∗ and µ∗ are degenerate distributions.

We want to show that if N′ > N, (σ
′∗, µ

′∗) is Blackwell more informative then (σ∗, µ∗).

Given the structure of the equilibrium, it is enough to show that f (·|θ) ∈ ∆(SN) is a

garbling of f ′(·|θ) ∈ ∆(SN′
). Let’s define garbling function g : SN′ → ∆(SN) such

that for any s̄ ∈ ∆(SN) and s̄′ ∈ ∆(SN′
)

g(s̄|s̄′) =

1 if s̄′ = (s̄, s) for s ∈ S

0 otherwise

Notice that for all s̄ ∈ SN

f (s̄|θ) = ∑
s̄′∈∆(SN′ )

g(s̄|s̄′) f ′(s̄′|θ) = ∑
s∈S

f ′ ((s̄, s)|θ)

At this point, we can apply the Blackwell’s theorem to conclude that I(K′, N′) >

I(K, N). □

3. Fix K and let (σ
′∗, µ

′∗) the maximally selective equilibrium of our game. As in the proof

of Proposition 4, we can induce an order on MK. Given the full support assumption, as

N → ∞, Prob
(
σ∗−1(m1) , S

)
→ 0. This implies that p(θ|m1) → p(θ) for all θ ∈ Θ

and so Em [Eθ [u(θ, σR(m))|m]] → Var[θ]. We can then conclude that I(K, N) → 0.

For the non-monotonicity, see the example in Appendix D. □
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Online Appendix (For Online Publication Only)

C Informativeness

In this Section, we establish the link between the ex-ante receiver’s expected payoff and the

expected variance of the state θ given the disclosed message.

Remark 3. Consider any PBE of our game. Fix the message m ∈ M, the receiver’s strategy

σR : M → A, the sender’s strategy σS : SN → M and the receiver’s posterior belief

p(·|m) ∈ ∆(Θ). The correlation between the state θ and the receiver’s action induced by σR

is a monotonic transformation of the ex-ante expected payoff of the receiver.

Proof. Consider any PBE of our game. Fix the message m ∈ M, the receiver’s strategy

σR : M → A, the sender’s strategy σS : SN → M and the receiver’s posterior belief

p(·|m) ∈ ∆(Θ). We have that

Eθ [u (θ, σR(m))] = − ∑
θ′∈Θ

µ(θ′|m)
(
E [θ|m]− θ′

)2

Given this, we can derive the ex-ante expected payoff of the receiver as:

Eθ,m [uR (θ, σR(m))] = − ∑
m∈M

Prob(m) ∑
θ′∈Θ

µ(θ′|m)
(
E [θ|m]− θ′

)2

− ∑
m∈M

∑
θ′∈Θ

Prob(m, θ′)
(
E [θ|m]− θ′

)2 .

At this point notice that

Prob(m, θ) = Prob(θ) · Prob(m|θ) = p(θ) ·
p(θ|m)∑θ′ p(θ′)∑s∈σ−1

S (m) f (s|θ′)
p(θ)

where

p(θ|m) =
p(θ)∑s∈σ−1

S (m) f (s|θ)

∑θ′∈Θ p(θ′)∑s∈σ−1
S (m) f (s|θ′) .

Rearranging the expression we get

Eθ,m [uR (θ, σR(m))] = − ∑
m∈M

∑
θ′∈Θ

p(θ′) ∑
s∈σ−1

S (m)

f (s|θ′)
(
E [θ|m]− θ′

)2 .
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A few algebraic steps allow us to show that

Eθ,m [uR (θ, σR(m))] = − ∑
m∈M

Prob(m)Var [θ|m] = −Em [Var [θ|m]]

This argument directly links the ex-ante expected payoff of the receiver with the variance of

θ given the disclosed message. We can now show that −Em [Var[θ|m]] is monotonic transfor-

mation of Corr(θ, a), where a is the random variable generated by σR(·) and

Corr(θ, a) =
E [θ · a]− E[θ]E[a]√

Var[θ]Var[a]
=

Em [Eθ [θ · σR(m)|m]]− E[θ]Em[σR(m)]√
Var[θ]Varm[σR(m)]

Notice that:

• Em[σR(m)] = E[θ];

• Em [Eθ [θ · σR(m)|m]] = Em
[
σR(m)2] since Eθ[θ|m] = σR(m);

• Varm[σR(m)] = Em
[
σR(m)2]− E[θ]2.

This implies that

Corr(θ, a) =
√

Varm[σR(m)]√
Var[θ]

=

√
E[a2]− E[θ]2√

Var[θ]
.

Given that −Em[Var[θ|m]] = Em

[
E [θ|m]2

]
− Em

[
E
[
θ2|m

]]
= E[a2] − E[θ2], we can

derive the following relation:

−Em[Var[θ|m]] = Var[θ] · Corr(θ, a)2 − Var[θ].

□

This argument allows us to conclude that both −Em[Var[θ|m]] and Corr(θ, a) can be used

to study the level of information transmitted in equilibrium. Indeed, both measures provide the

same comparative statics with respect to the main parameters of our model.

D Examples of the Non-Monotonicity of I(K, N)

As stated in Proposition 1, I(K, N) can be non-monotonic in N. In Section 2.2 we provide an

intuition for this result by introducing two effects, the imitation and the selection effect. The
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following example illustrates more in detail both effects and how their interaction is the key

determinant in the shape of I(K, N).

Let Θ = {0, 1}, p(1) = 1
2 , S = {A, B} and suppose that f (A|1) = γ > 1

2 and f (A|0) =
η < 1

2 . Finally, assume that K = 1. Given the parameters, the set of possible messages is M =

{A, B, ∅}. A maximally selective sender’s strategy discloses m = A if A is available and

otherwise discloses m ∈ {B, ∅}. This implies that, after observing m ∈ {B, ∅}, the receiver

will place probability one over a vector of signals s̄ with s̄i = B for all i ∈ {1, ..., N}. Let’s

denote this vector of signals by s̄B. Formally, after m ∈ {B, ∅}, µ∗(s̄B|m) = 1 and µ∗(s̄|m) =

0 for all s̄ , s̄B. On the other hand, after seeing m = A, the receiver places positive probability

on every s̄ ∈ S such that si = A for at least one i ∈ {1, ..., N}. Formally, after observing m =

A, µ∗(s̄|m) = q(s̄|S \ {s̄B}), while µ∗(s̄B|m) = 0. Given this premise, it is easy to see that

p (1|m ∈ {B, ∅}) =
1
2(1 − γ)N

1
2(1 − γ)N + 1

2(1 − η)N
=

(1 − γ)N

(1 − γ)N + (1 − η)N

p (1|m = A}) =
1
2

(
1 − (1 − γ)N)

1
2 (1 − (1 − γ)N) + 1

2 (1 − (1 − η)N)
=

1 − (1 − γ)N

2 − (1 − γ)N − (1 − η)N

Since θ is binary, the optimal action of the receiver coincides with the posterior beliefs we

derived above. Her expected payoff given message m as

Eθ [u (θ, σR(m)) |m] = − p(1|m)p(0|m)

2
.

From this, we can get the ex-ante receiver’s expected payoff as

Em [Eθ [u (θ, σR(m)) |m]] = −
(1 − γ)N (

1 − (1 − γ)N)+ (1 − η)N (
1 − (1 − η)N)

2 ((1 − γ)N + (1 − η)N) (2 − (1 − γ)N − (1 − η)N)
=

−1
2

[
1 −

(
1 − (1 − γ)N)2

2 − (1 − γ)N − (1 − η)N − (1 − γ)2N

(1 − γ)N + (1 − η)N

]

According to our definition, the equilibrium informativeness is equal to

I(K, N) =
1
4
− Em [Eθ [u (θ, σR(m)) |m]]

Let’s consider the extreme case of perfect good news, i.e. the case in which η = 0 and
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γ < 1. Under these conditions, m = A perfectly reveals that θ = 1. This implies that

I(K, N) =
1
4
− (1 − γ)N

2 (1 + (1 − γ)N)

It is easy to verify that I(K, N) is strictly increasing in N. Hence, an increase in N al-

ways leads to more information transmitted in equilibrium. The intuition behind this result is

straightforward. Only θ = 1 can draw a signal equal to A and, when this happens, the value of

the state is fully revealed. The larger the number of available signals, the more likely it is that a

high-type sender can disclose m = A. In addition, as a consequence of the previous fact, when

N grows, a disclosure of m ∈ {B, ∅} makes the receiver more confident of θ = 0. These two

channels together are responsible of the fact that more available signals lead to more informa-

tion transmitted in equilibrium: We refer to this as separation effect.

Let’s now consider the other extreme case of perfect bad news, i.e. the case in which η > 0

and γ = 1. Under these conditions, m ∈ {B, ∅} perfectly reveals that θ = 0. Under this

parametrization, we have that

I(K, N) =
1
4
− 1 − (1 − η)N

2 (2 − (1 − η)N)

It is easy to show that when γ = 1, I(K, N) is decreasing in N. That is, the amount of

information transmitted in equilibrium decreases with the number of available signals. Again,

the intuition is simple. As N grows, the low-type sender is increasingly more likely to draw

at least one A-signal. Thus, disclosing the fully-revealing message m ∈ {B, ∅} becomes less

likely and, at the same time, m = A becomes weaker evidence of θ = 1. This decrease in

separation opportunities leads to less information transmitted in equilibrium: We refer to this

as imitation effect.

Finally, we consider the case in which f has full support, i.e. we have both η > 0 and

γ < 1. It is possible to show that for every pair (γ, θ), I(K, N) increases moving from N = 1

to N = 2. However, as N → ∞, I(K, N) converges to zero. This suggests that equilibrium

informativeness is non-monotonic in N. Intuitively, in this case, both the separation and im-

itation effects play a role in how the information transmitted in equilibrium changes with the

number of available signals. Which effect prevails determines the direction of the change in

I(K, N) after an increase in N.

Hence, the example discussed above allows us to illustrate that the effect of a change in

N on I(K, N) is the result of multiple forces given by the interaction of players’ strategic

4



incentives and available messages. The exact parametrization of the model pins down what

are the cases in which the separation effect dominates over the imitation effect. However, as

N becomes extremely large, the negative effect on information transmitted prevails, making

communication fully ineffective.
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E Additional Figures and Results

E.1 Senders’ Behavior
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(a) Signal Distribution for K = 1
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Figure 6: Signal Distributions

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y 
of

 S
ig

na
ls

A B C D Empty

54.55 %: 18 subjects

0.0

0.2

0.4

0.6

0.8

1.0

A B C D Empty

High State

27.27 %: 9 subjects

0.0

0.2

0.4

0.6

0.8

1.0

A B C D Empty

18.18 %: 6 subjects

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y 
of

 S
ig

na
ls

A B C D Empty

Induced Correlation: 0.619 
 Average Payoff: 57.233

0.0

0.2

0.4

0.6

0.8

1.0

A B C D Empty

Low State

Induced Correlation: 0.605 
 Average Payoff: 50.541

0.0

0.2

0.4

0.6

0.8

1.0

A B C D Empty

Induced Correlation: 0.747 
 Average Payoff: 52.278

Figure 7: Sender’s Clustering for the Treatment (K1, N1)
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Figure 8: Sender’s Clustering for the Treatment (K1, N10)
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Figure 9: Sender’s Clustering for the Treatment (K3, N3)
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Figure 10: Sender’s Clustering for the Treatment (K3, N10)
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E.2 Receiver’ Behavior
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Figure 11: Cumulative Distribution Functions of Receivers’ Guesses
for K = 1
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Figure 12: Cumulative Distribution Functions of Receivers’ Guesses
for K = 3
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Table 10: Receivers’ Responses for each K - Tobit Results

K = 1 K = 3

(1)
Receiver’s

Guess

(2)
Empirical

Optimal Guess

(3)
Receiver’s

Guess

(4)
Empirical

Optimal Guess

GPA 16.94∗∗∗ 19.48∗∗∗ 33.48∗∗∗ 43.20∗∗∗

(0.93) (0.98) (3.83) (4.02)

DN10 −20.53∗∗∗ −29.26∗∗∗ −30.18∗∗∗ −45.86∗∗∗

(3.15) (1.95) (3.91) (5.16)

DN50 −17.73∗∗∗ −25.87∗∗∗ −35.53∗∗∗ −59.08∗∗∗

(3.64) (1.44) (4.82) (6.18)

Constant 15.95∗∗∗ 2.86 −20.96∗∗ −49.97∗∗∗

(1.87) (2.52) (8.80) (9.11)

Obs 1, 545 1, 545 1, 560 1, 560
Subjects 103 103 104 104

Robust standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.10
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Figure 13: CDF of Receivers’ Response Gaps: Comparisons with N = 10

E.2.1 Response to Selected Evidence: Additional Results

We study how, on average, the guesses made by the receivers respond to the message GPA. Our

theoretical predictions suggest that keeping fixed a value of the GPA, receivers should become
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Table 11: Receivers’ Responses for N = 10 and N = 50 - Tobit Results

N = 10 N = 50

(1)
Receiver’s

Guess

(2)
Empirical

Optimal Guess

(3)
Receiver’s

Guess

(4)
Empirical

Optimal Guess

GPA 30.07∗∗∗ 37.77∗∗∗ 18.61∗∗∗ 20.79∗∗∗

(6.12) (7.89) (1.63) (1.16)

DK3 12.12∗ 15.91∗∗∗ 3.53 1.09
(6.59) (3.39) (4.19) (0.72)

Constant −52.02∗∗ −92.89∗∗∗ −7.56 −27.74∗∗∗

(23.07) (30.00) (6.17) (4.35)

Obs 1, 005 1, 005 1, 065 1, 065
Subjects 67 67 71 71

Robust standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.10

more skeptical as N increases, leading to lower guesses for any given GPA. Indeed, a higher

value of N allows for more selection on the part of the sender, making favorable messages less

informative about the type being high and unfavorable messages more informative about the

type being low. In this Section, we plot polynomial fits of the actual receivers’ guesses and of

the guesses of an idealized Bayesian receiver as a function of the message GPA.

The first pattern we can observe is that receivers’ guesses are higher when the disclosed

information becomes more favorable. The second notable pattern that we can observe in the

figure emerges from the comparison between N = K and N > K: the receivers’ guesses
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Figure 14: Receivers’ Average Guesses for K = 1
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Figure 15: Receivers’ Average Guesses for K = 3

decrease in N for each message GPA and the decrease is particularly pronounced for higher

values of the GPA. The only exception is the comparison between (K3, N10) and (K3, N3),

where the guesses are similar for high values of the GPA. This suggests that receivers account

for the fact that evidence is more selected when N is larger and they adjust their guesses

accordingly.

Comparing the guesses of an idealized Bayesian receiver with the behavior of receivers in

the data, we note that the qualitative patterns are similar. However, the receivers do not adjust

their guesses enough when moving from N = K to N > K. When N is large, subjects tend to

overguess for every value of the GPA (except for the N = K = 3 treatment in which receivers

tend to underguess). As discussed in Section 4.2.1, this behavior is in line with the bias of

selection neglect: when making inferences given the disclosed information receivers may fail

to account for the nature of the undisclosed information.

11
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F.1 Graphical Interface

Figures 16, 17, 18 and 19 show the software interface of our experiment. More specifically,

Figures 16 and 17 show the message choice of the sender (communication stage). Figure 18

shows the screen for the choice of the receiver’s guess (guessing stage). Figure 19 shows the

feedback screen, where all relevant information is reported to both players.

Figure 16: Sender’s Interface Before the Message Choice
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Figure 17: Sender’s Interface After the Message Choice

Figure 18: Receiver’s Interface
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Figure 19: Feedback Interface

F.2 Sample Instructions

In this section, we reproduce instructions for one of our treatments, (K3, N10). These instruc-

tions were read out aloud so that everybody could hear. A copy of these instructions was

handed out to the subject and available at any point during the experiment.

14
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Welcome 

You are about to participate in a session on decision-making, and you will be paid for your 

participation with cash vouchers (privately) at the end of the session. What you earn 

depends partly on your decisions, partly on the decisions of others, and partly on chance. 

Please turn off phones and tablets now. Please close any program you may have open 

on the computer. The entire session will take place through computer terminals, and all 

interaction among you will take place through computers. Please do not talk or in any way 

try to communicate with other participants during the session. 

We will start with a brief instruction period. During the instruction period you will be given 
a description of the main features of the session and will be shown how to use the 

computer interface. If you have any questions during this period, raise your hand and your 

question will be answered privately. 

 

Instructions 

You will play for 30 matches in either of two roles: Sender or Receiver.  At the end of 

each round, you will be randomly paired with a new player. 

There are two urns: one Red and one Yellow. Each urn contains four types of balls, 

labeled A, B, C, and D. 

The Round 

At the beginning of each round, the Computer randomly selects one of the two urns (we 

will refer to the selected urn as secret Urn). The secret Urn has a 50% chance of being 

Red and a 50% chance of being Yellow. 

The Computer randomly draws 10 balls from the secret Urn. Depending on the color of 
the secret Urn, each ball has a chance of being drawn that is reported in the table below: 
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Urn A B C  D 

Red Urn 45% 25% 20% 10% 

Yellow Urn 10% 20% 25% 45% 

 

The 10 balls are drawn independently, meaning that the chance of drawing a ball is not 

affected by previous draws. 

1. Communication Stage—Sender is Active 

The sender observes the color of the secret Urn and sees the 10 balls that were drawn 

from it by the Computer. 

The Sender can disclose to the Receiver up to 3 of these 10 balls. We call this the 

Sender’s Message. 

2. Guessing Stage—Receiver is Active 

The Receiver observes the Sender’s Message but does not observe the color of the 

secret Urn.  

The Receiver must guess how likely it is that the secret Urn is Red. Specifically, the 

Receiver chooses a number from 0 to 100. We call this the Receiver’s Guess.  

For example, a Guess of 20 indicates that the Receiver believes there is a 20% chance 

that the secret Urn is Red. A Guess of 80, instead, indicates that the Receiver believes 

there is an 80% chance that the secret Urn is Red. More generally, a higher Guess 

indicates a greater chance that the secret Urn is Red. 

3. Feedback 

At the end of each round, both Sender and Receiver will see screens that summarize 

information from the Round. You will learn the color of the secret Urn; the balls that were 
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available to the Sender; the Message sent by the Sender; the Receiver's Guess; and your 

payoff. You will also see a history of what happened in previous rounds.  

 

How Payoffs Are Determined 

In each round, you earn points that will be converted into cash at the end of the 

experiment. 

Sender 

The number of points the Sender earns in a round depends only on the Receiver’s 

Guess and not on the color of the secret Urn. Specifically, the number of earned points 

is equal to the Receiver’s Guess. Therefore, the higher the Receiver’s Guess, the 

greater the number of points earned by the Sender.  

Receiver  

The number of points the Receiver earns depends on the Guess, on the color of the secret 

Urn, and on chance. Specifically, the number of earned points is determined as follows: 

The Computer randomly generates two numbers between 0 and 100, where 

each integer number is equally likely. Let’s call them the Computer’s Random 

Numbers.  

The Receiver earns 100 points if one of the following two things happens: 

- The secret Urn is Red and the Receiver’s Guess is greater than or equal 

to the smallest of the two Computer’s Random Numbers. 

- The secret Urn is Yellow and the Receiver’s Guess is smaller than or 

equal to the largest of the two Computer’s Random Numbers. 

The Receiver earns 0 points otherwise. 
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This compensation rule was designed so that the Receiver has the greatest chance 
of earning 100 points when they choose a Guess that equals their true belief that 
the secret Urn is Red. 
 

Final Payments 

At the end of the experiment, the total number of points you earned will be converted to 

dollars at the rate of: 

- $0.012 per point ($1.20 per 100 points) if you are the Sender. 

- $0.009 per point ($0.90 per 100 points) if you are the Receiver. 

In addition, you will receive a flat participation fee of $10. 
 

Practice Rounds: 
 

The experiment will begin with 2 practice rounds, to make you familiar with the interface 

and the tasks of both Sender and Receiver. All the choices you make in the Practice 

Rounds are unpaid and do not affect in any way the rest of the experiment. 
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Summary 

Before we start, let me remind you that: 

- You will play 30 Rounds in the same role: Sender or Receiver. You will be assigned 

your role at the end of the Practice Rounds. 

- The secret Urn has an equal chance of being Red or Yellow. 

- The Computer randomly draws 10 balls from the secret Urn. 

- The Sender can disclose to the Receiver up to 3 of these 10 balls. 

- The Receiver has to guess how likely it is that the secret Urn is Red. 

- The Receiver has the greatest chance of earning points when they choose a 
Guess that equals their true belief that the secret Urn is Red. 

- The higher the Receiver’s Guess, the greater the number of points earned by the 

Sender. 

- At the end of each Round, you are randomly paired with a new participant. 
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