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Information provision in games influences behavior by affecting agents’
beliefs about the state as well as their higher-order beliefs. We first char-
acterize the extent to which a designer canmanipulate agents’ beliefs by
disclosing information. We then describe the structure of optimal belief
distributions, including a concave-envelope representation that sub-
sumes the single-agent result of Kamenica and Gentzkow. This result
holds under various solution concepts and outcome selection rules. Fi-
nally, we use our approach to compute an optimal information structure
in an investment game under adversarial equilibrium selection.
I. Introduction
Monetary incentives, such as taxes, fines, wages, and insurance are ways
of manipulating agents’ payoffs to incentivize a range of behaviors, from
exerting effort to risk taking. In incomplete-information environments,
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information design in games 1371
strategic transmission of information may also be used as a tool to affect
agents’ behavior, in this case by manipulating their beliefs. Information
design analyzes the latter, in a setting where a designer commits to dis-
closing information to a group of interacting agents.
Under incomplete information, agents’ behavior depends, in part, on

their beliefs about the uncertain state of the world. For example, an in-
vestor’s belief about the quality of a new technology influences his deci-
sion whether or not to invest in the startup that launches it. However, his
decision also depends on how likely he thinks other investors are to fund
the startup, which in turn depends on their own beliefs about the state
and other investors’ decisions. Thus, an agent’s beliefs about the other
agents’ beliefs about the state also affect his decision, as do his beliefs
about their beliefs about his beliefs about the state, and so on. These
higher-order beliefs are absent from the single-agent environment, but
they are an important part of the information-design problem with mul-
tiple interacting agents.
This paper contributes to the foundations of information design in

three ways. First, we characterize the feasible distributions of agents’ be-
liefs that a designer can induce through the choice of information struc-
ture. Information design is ultimately an exercise in belief manipulation,
whether it is explicitly modeled as such or solved by way of incentive-
compatible distributions over actions and states. However, an informa-
tion designer cannot induce just any belief distribution she wishes to.
In the single-agent case, for example, the designer is constrained to dis-
tributions over beliefs about the state that on average equal the prior, a
condition known as Bayes plausibility (Kamenica and Gentzkow 2011). In
the multiagent case, an additional requirement emerges: agents’ beliefs
should be consistent with one another. We further establish an equiva-
lence between (Bayes-plausible and consistent) distributions of agents’
beliefs and distributions of the designer’s beliefs, which is particularly
useful in applications.
Second, we represent the designer’s problem in a way that exploits the

structure of consistent belief distributions. We show that every consistent
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belief distribution can be represented as a (convex) combination ofmore
“basic” elements, themselves belief distributions. Therefore, the problem
of choosing an optimal information structure is equivalent to choosing an
optimal combination of such basic elements, subject to Bayes plausibility.
From this follows a two-step approach to the information-design problem:
the first step optimizes among the basic elements only, and the second
step optimally combines the elements selected in the first step, subject
to Bayes plausibility. The latter step corresponds to the concavification
of a value function derived in the first step. Therefore, this representation
subsumes the single-agent result of Kamenica and Gentzkow (2011). This
two-step decomposition can be interpreted as optimizing over private in-
formation in the first step and then adding an optimal public signal in the
second step.
Third, the above results apply to a variety of solution concepts and

equilibrium-selection rules. The choice of solution concept can address
many problems in information design, in much the same way that it does
in mechanism design. For example, a designer may be concerned that
agents have only bounded depths of reasoning, that they can deviate in
coalitions, or that they can communicate. A designer may also want to
hedge against the possibility that, when there are multiple outcomes
(consistent with the solution concept), agents might coordinate on the
outcomemost unfavorable to her. This can be achieved by choosing a ro-
bust information structure, whichmaximizes the designer’s payoff under
an adversarial selection rule. Current methods have focused on Bayes-
Nash equilibrium (BNE) as a solution concept and designer-preferred
equilibrium selection.
We apply our approach to an investment game where the coordina-

tion motive is a source of multiple equilibria under incomplete informa-
tion and the designer would like to maximize investment. In this prob-
lem, as in other similar ones, the possibility that agents coordinate on
the equilibrium least preferred by the designer is a serious issue. In re-
sponse, the designer may want to choose the information structure that
maximizes investment probabilities in the worst equilibrium. Informa-
tion design under such adversarial equilibrium selection is outside the
scope of existing methods. We use our approach to compute the optimal
information structure that takes on a simple form: every agent receives
either a private message that makes investing uniquely optimal because
of a combination of first- and higher-order beliefs or a public message
that makes it common knowledge that the state is low, and hence not in-
vesting is uniquely optimal. The private messages create contagion à la
Rubinstein (1989), which we refer to as the bandwagon effect: one mes-
sage induces a first-order belief that is high enough to incentivize invest-
ment by itself, while all other messages aim to cause investment by an in-
duction argument that uses beliefs of incrementally higher order.
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The single-agent problem has been a rich subject of study since the in-
fluential work of Kamenica andGentzkow (2011). The standard problem
is mathematically analogous to Aumann and Maschler (1995), which
studies a repeated game with an informed player who exploits his knowl-
edge against an uninformed opponent.1 By contrast, the theory of infor-
mation design in games is not as well understood. Bergemann andMorris
(2016) and Taneva (2019) formulate the Myersonian approach to Bayes-
Nash information design. This approach is based on a notion of correlated
equilibrium under incomplete information, Bayes correlated equilibrium
(BCE), which characterizes all possible BNE outcomes that could arise
under all information structures. The BCE approach elegantly avoids
the explicit modeling of belief hierarchies and proves useful for solving
information-design problems bymeans of linear programming. However,
it fundamentally relies on BNE as a solution concept and on selecting the
designer-preferred equilibrium in case of multiplicity. In contrast, our re-
sults develop the belief-based approach to information design, which can
be viewed as the multiagent analog to Kamenica and Gentzkow (2011)’s
single-agent formulation. Earlier works have studied the effects of public
and private information on equilibrium behavior, efficiency, and welfare
(e.g., Vives 1988;Morris and Shin 2002; Angeletos and Pavan 2007). More
recent papers study the optimal design of information in voting games
(Alonso and Câmara 2016; Chan et al. 2019), dynamic bank runs (Ely
2017), stress testing (Inostroza and Pavan 2017), auctions (Bergemann,
Brooks, and Morris 2017), or contests (Zhang and Zhou 2016) or focus
on public information in games (Laclau and Renou 2016).
II. The Information-Design Problem
A set N 5 f1, ::: , ng of agents interact in an uncertain environment. The
variable v ∈ V describes the uncertain state of the world, where the set V
is finite. Every agent i ∈ N has a finite action set Ai and utility function
ui : A � V→R, where A 5

Q
iAi. A priori, the agents know only that v

is distributed according to m0 ∈ DV, which is common knowledge. We re-
fer to G 5 ðV, m0,N , fAig, fuigÞ as the base game.
A designer commits to disclosing information to the agents about the

payoff-relevant state v. This is modeled by an information structure (S, p),
where Si ⊆ S is the finite set of messages that agent i can receive,
S 5

Q
iSi is the set of message profiles, and p :V→DðSÞ is the information
1 Other early contributions to single-agent information design includemodels by Brocas
and Carrillo (2007) and Rayo and Segal (2010).
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map.2 In any state v, the message profile s 5 ðsiÞ is drawn according to
pðsjvÞ, and agent i privately observes si. An information structure can
be thought of as an experiment concerning the state, such as an audit,
a stress test, or a medical test. As is standard in information design, this
model assumes that the designer commits to the information structure
at a time when she does not know the realized state but knows only its dis-
tribution m0.3 The information designer’s preferences are summarized by
the payoff function v : A � V→R. Her objective is to maximize her ex-
pected payoff through the choice of information structure.
The combination of information structure and base game, G 5

hG , ðS , pÞi, constitutes a Bayesian game in which agents play according to
a solution concept ΣðGÞ⊆ fj 5 ðjiÞ j ji : Si → DAi for all ig. The resulting
outcomes are distributions over action profiles and states, represented
by

OΣðGÞ 5 g ∈ DðA � VÞ : there exists jf ∈ ΣðGÞ such that
gða, vÞ 5 osjðajsÞpðsjvÞm0ðvÞ for all ða, vÞg:

Assume that OΣ is nonempty and compact valued. Given that G is finite,
this holds when Σ is a BNE, for example. For a fixed base game, we just
write OΣ(S, p). When OΣ contains multiple outcomes, the designer ex-
pects that one of them will happen, which is described by a selection rule
g that associates to any D ⊆ DðV � AÞ an element g ðDÞ ∈ D. The worst
and the best outcomes are natural selection criteria. A pessimistic de-
signer, or one interested in robust information design, expects the worst
outcome:

g ðDÞ ∈ argmin
g∈D

o
a,v

gða, vÞvða, vÞ (1)

for all compact D ⊆ DðV � AÞ. An optimistic designer would instead ex-
pect the best equilibrium, with argmax instead of argmin in (1). Other
criteria, such as random-choice rules, could also be considered. Letting
g ðS,pÞ ≔ g ðOΣðS , pÞÞ, the designer’s ex ante expected payoff is given by

V ðS , pÞ ≔ o
a,v

g ðS ,pÞða, vÞ vða, vÞ: (2)

Finally, the information-design problem is supðS ,pÞ V ðS , pÞ.
2 We restrict our attention to finite message spaces, because doing so guarantees exis-
tence of a BNE for all information structures. Any infinite set S would serve the purpose.

3 While commitment can be a strong assumption in some situations, it holds implicitly
in repeated environments wherein a sender makes announcements periodically and wants
to be trusted in the future (Best and Quigley 2018; Mathevet, Pearce, and Stacchetti 2018).
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III. Information Design as Belief Manipulation
We reformulate information design into a belief-manipulation problem,
analogously to Kamenica and Gentzkow’s (2011) approach to the single-
agent case. Choosing an information structure is equivalent to choosing
a distribution over belief hierarchies. However, only a special class of belief
(hierarchy) distributions can be induced by information structures. Ka-
menica and Gentzkow (2011) established that choosing an information
structure is equivalent to choosing a Bayes-plausible distribution over first-
order beliefs. We show that a similar equivalence holds in games, provided
that agents’ beliefs are, in addition, consistent with each other.
A. Belief Distributions
A belief hierarchy ti for agent i is an infinite sequence (t1i , t
2
i , :::) whose com-

ponents are coherent beliefs of all orders:4 t1i ∈ DV is i’s first-order belief,
t2i ∈ DðV � ðDVÞn21Þ is i’s second-order belief (i.e., a belief about v and ev-
ery j ’s first-order beliefs), and so on. Even if the belief hierarchies are co-
herent, they may assign positive probability to other agents’ belief hierar-
chies that are not coherent. Brandenburger and Dekel (1993) show that
we can construct a set of coherent belief hierarchies Ti for every i such that
there exists a homeomorphismb*i : Ti →DðV � T2iÞ for all i.5 Thismapde-
scribes i’s beliefs about (v, t2i), given ti, and shows that there are sets of co-
herent belief hierarchies for all agents that put only positive probabilities
on each other, making coherency common knowledge. Let T ≔

Q
iTi be

the space of hierarchy profiles with common knowledge of coherency.
Given m0 and an information structure (S, p), and upon receiving ames-

sage si, agent i formulates beliefs miðsiÞ ∈ DðV � S2iÞ about the state and
other agents’messages in S2i ≔

Q
j≠iSj by using Bayes’s rule. In particular,

m1
i ðsiÞ ≔ margVmiðsiÞ describes i’s belief about the state, given si, called first-

order belief. Since every j has a first-order belief m1
j ðsjÞ for everymessage sj, i ’s

belief about sj (given si) gives i a belief about m1
j ðsjÞ. This belief about j ’s be-

lief about the state is i’s second-order belief m2
i ðsiÞ, given si.6 Since every j has

a second-order belief m2
j ðsjÞ for every sj, i can formulate a third-order be-

lief, given si, and so on. By induction, every si induces a belief hierarchy
hiðsiÞ ∈ Ti for agent i, and everymessage profile s induces a profile of belief
hierarchies hðsÞ ≔ ðhiðsiÞÞi∈N .
4 A hierarchy t is coherent if any belief tki coincides with all beliefs of lower order, ftni gk21
n51,

on lower-order events: margXk21
tki 5 tk21

i for all k ≥ 1 where Xk21 5 supp tk21
i .

5 We often write b*i ðt2i jtiÞ and b*i ðvjtiÞ to refer to the corresponding marginals.
6 Technically speaking, a second-order belief also includes a first-order belief.
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Definition 1. An information structure (S, p) induces a distribution
t ∈ DT over profiles of belief hierarchies, called a belief(-hierarchy) distribu-
tion, if

tðtÞ 5 o
v

pðfs : hðsÞ 5 tgjvÞm0ðvÞ (3)

for all t.
For example, the information structure in table 1 induces t 5

ð3=4Þt1=3 1 ð1=4Þt1 when m0 ≔ m0ðv 5 1Þ 5 1=2, where tm is the hierarchy
profile in which m ≔ mðv 5 1Þ is commonly believed.7

We categorize belief distributions as public or private. This distinction is
closely linked to the nature of information that induces those distributions.
Definition 2. A belief distribution t is public if t1i 5 t1j and

margT2i
b*i ð�jtiÞ 5 dt2i

(where d is the Dirac measure) for all t ∈ supp t
and jsupp tj ≥ 2. A belief distribution t is private if it is not public.
The first part says that agents share the same first-order beliefs and

that this is commonly believed among them. This is the natural transla-
tion in terms of beliefs of the standard notion of public information.
Note also that we categorize the degenerate case jsupp tj 5 1 as private.
When the support is a singleton, this distinction is indeed mostly a mat-
ter of semantics; yet the current choice makes our characterization be-
low more transparent.
B. Manipulation
Consider an environment with two agents and two equally likely states
v ∈ f0, 1g. For each agent i 5 1, 2, consider two belief hierarchies, ti and
t 0i , such that

b*i ðtj jtiÞ 5 b*i ðt 0j jt 0i Þ 5 1 8 i, j ≠ i, (4)
7 To see why, note tha
sage si0 has belief 1=3 tha
v 5 1 and is certain tha
TABLE 1
A (Public) Information Structure

s10 s200

p(⋅F0):
s10 1 0
s200 0 0

p(⋅F1):
s10 1/2 0
s200 0 1/2
t Prðs01, s 02Þ 5 3=4, Prðs001 , s002 Þ
t v 5 1 and is certain that j als
t j also received sj00.
5 1=4, a
o receive
nd an agent i receiving mes-
d sj0, while si00 has belief 1 that
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b*1 ðv 5 1jt1Þ 5 b*1 ðv 5 1jt20Þ 5 0:8, and b*1 ðv 5 1jt 01Þ 5 b*1 ðv 5 1jt2Þ 5
0:2. In words, at (t1, t2) and (t 01, t2

0), the agents believe that v 5 1 with dif-
ferent probabilities, 0.8 or 0.2, and this disagreement is commonly
known. Can the belief-hierarchy distribution tðtÞ 5 tðt 0Þ 5 1=2 be in-
duced by some information structure? More generally, can the designer
ever get agents to agree to disagree? Since Aumann (1976), we have
known that Bayesian agents cannot agree to disagree if they have a com-
mon prior. Say that p ∈ DðV � T Þ is a common prior if

pðv, tÞ 5 b*i ðv, t2ijtiÞpðtiÞ (5)

for all v, t, and i. That is, all agents i obtain their belief map b*i by Bayesian
updating of the same distribution p. Denote by Df the probability mea-
sures with finite support. Define

C ≔ t ∈ DfT : ∃ a common prior p such that t 5 margT p
� �

(6)

to be the space of consistent (belief-hierarchy) distributions. In a consis-
tent distribution, all agents’ beliefs arise from a common prior that draws
every t with the same probability as t, that is, t 5 margT p. Let pt be the
unique distribution p in (6) (uniqueness follows from proposition 4.5
of Mertens and Zamir 1985).
Note that consistency does not require that margVp 5 m0, which is a

conceptually different point. A distribution t ∈ DfT is Bayes plausible for
agent i if

o
ti

margVb
*
i ð�jtiÞtiðtiÞ 5 m0,

that is, if agent i’s expected first-order belief equals the state distribution.
Proposition 1. There exists an information structure that induces

t ∈ DfT if and only if t is consistent and Bayes plausible for some agent i.
This characterization,whichbuilds uponMertens andZamir (1985), dis-

ciplines thedesigner’s freedom in shaping agents’beliefs. In the one-agent
case, information disclosure is equivalent to choosing a Bayes-plausible
distribution over first-order beliefs. In themultiagent case, it is equivalent
to choosing a consistent distribution over belief hierarchies that is Bayes
plausible for some agent. Importantly, it does notmatter which agent i sat-
isfies Bayes plausibility, because by consistency, if it is true for one agent,
then it will hold for all.
Note, however, that merely ensuring that Bayes plausibility holds for

all agents does not guarantee consistency. In the simple example above,
t is Bayes plausible for both agents and yet fails consistency, because b*1 ðv 5
1, t 02jt 01Þ � ð1=2Þ5 0:2 � ð1=2Þ ≠ b*2 ðv5 1, t 01jt 02Þ � ð1=2Þ5 0:8 � ð1=2Þ violates
equation (5).
From an operational viewpoint, there are two distinct ways of design-

ing a consistent belief-hierarchy distribution. The first one is to design
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the distributions of agents’ beliefs individually and then couple them so
as to ensure consistency (see Ely 2017 for a related procedure). A
different approach, formulated in the next proposition, is to design
the distribution of designer’s beliefs and then to derive from it the re-
sulting consistent distribution of agents’ beliefs.
Proposition 2. t ∈ DfðT Þ is consistent and Bayes plausible if and only

if there exists n : supp t→ DV such that, for all t, v, and i,

o
t

tðtÞnðvjtÞ 5 m0 vð Þ, (7)

nðvjti, t2iÞ 5 b*i ðvjti , t2iÞ ≔ b*i ðv, t2i jtiÞ
b*i ðt2i jtiÞ

, (8)

tðt2i jtiÞ 5 b*i ðt2i jtiÞ: (9)

Whereas each agent i observes only ti, the designer observes the entire
hierarchy profile t 5 ðt1, :::, tnÞ and hence is better informed than every
single agent. In the above, n(t) is interpreted as the designer’s beliefs
about the state, obtained by conditioning on t. The result demonstrates
that any consistent and Bayes-plausible belief-hierarchy distribution cor-
responds to a specific distribution of designer’s beliefs, and vice versa—a
relationship governed by three conditions. The first one states that the
average of the designer’s beliefs is equal to the distribution of states. This
is a form of Bayes plausibility at the designer’s level. The second requires
that the designer’s beliefs about the state be the same as what any agent
would believe if he also knew the information of all the other agents.
The last condition requires that i ’s conditional beliefs about the other
agents’ hierarchies can be derived from t by conditioning on i’s belief
hierarchy. This result suggests a different way of approaching the design
of (consistent and Bayes-plausible) belief-hierarchy distributions: it is
equivalent to designing the distribution of the designer’s beliefs subject
to Bayes plausibility in equation (7) and deriving the agents’ hierarchies
via equations (8) and (9). We demonstrate how this can be a useful way
of implementing consistency in section V.
C. Outcomes from Belief Distributions
To complete the formulation of information design in the space of be-
liefs, the equivalence between information structures and belief distribu-
tions should be more than epistemic; it should be about outcomes. For
any consistent distribution t, let a solution concept be a collection ΣBðtÞ
of sets L⊆fj : suppt→ DAg.8 This describes agents’ behavior in the
8 We thank Daniel Clark for pointing out an error; this led to a substantial improvement
of this section.
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Bayesian game hG, pti, where pt is the unique common prior p such that
margT p 5 t. The different Ls capture possibly correlated behaviors,
enabled by the addition of different (belief-preserving) correlating de-
vices to t (see Liu 2009). Given any L ∈ ΣBðtÞ, the resulting outcomes are

OLðtÞ ≔ g ∈ DðA � VÞ : there exists jf ∈ L such that

gða, vÞ5 o
t

jðajtÞptðt, vÞ for all ða, vÞg,

from which it follows that the designer’s ex ante expected payoff from a
consistent distribution t is

wðtÞ ≔ sup
L∈ΣBðtÞ

o
v,a

g OLðtÞð Þ a, vð Þv a, vð Þ: (10)

Note that ΣB is useful only insofar as it captures the appropriate out-
comes from solution concept Σ. Hence, we assume that L ∈ ΣBðtÞ if
and only if L is such that OLðtÞ 5 OΣðS , pÞ for some (S, p) inducing t.
In general, it is well known that a given solution concept may not yield
the same set of outcomes when applied to an information structure as
when applied to the corresponding belief distribution (e.g., Ely and
Peski 2006; Liu 2009). Indeed, even if (S, p) induces t, there may be mul-
tiple message profiles s inducing the same hierarchy profile t, thus cre-
ating opportunities for redundant correlations of agents’ behavior that
are not possible in t. In some cases, the literature makes clear which ΣB

should be chosen, given Σ. For example, if Σ 5 BNE, then said correla-
tions can be recovered (without affecting the beliefs in t) by taking ΣB to
be Liu’s (2015) belief-preserving correlated equilibrium. Alternatively, if
Σ is interim correlated rationalizability (ICR; Dekel, Fudenberg, and
Morris 2007), then ΣB should also be ICR.
IV. Representation of Optimal Solutions
In this section, we prove that optimal solutions to information-design
problems in games can be seen as a combination of special distributions.
As a consequence, all optimal solutions can be decomposed into optimal
purely private and optimal public components, where the latter come
from concavification.
A. Assumptions
Our approach can handle various selection rules and solution concepts,
provided the following assumptions hold.
Linear Selection. For all D 0, D 00 ⊆ DðV � AÞ and 0 ≤ a ≤ 1, g ðaD 0 1

ð1 2 aÞD 00Þ 5 ag ðD 0Þ 1 ð1 2 aÞg ðD 00Þ.



1380 journal of political economy
Invariant Solution. Fix t, t0, t00 ∈ C such that supp t 5 supp t0 [
supp t00 and supp t0 \ supp t00 5 ∅. L ∈ ΣBðtÞ if and only if there exist
L0 ∈ ΣBðt0Þ and L00 ∈ ΣBðt00Þ such that L 5 fj : supp t→DA : jjsuppt0 ∈ L0

and jjsuppt00 ∈ L00g.
Linearity of g is a natural assumption that requires the selection crite-

rion to be independent of the subsets of outcomes to which it is applied.
The best and the worst outcomes, defined in (1), are linear selection cri-
teria. However, selecting the best outcome within one subset and the
worst in another breaks linearity, unless the outcome is always unique.
Invariance says that play at a profile of belief hierarchies t under ΣB is

independent of the ambient distribution from which t is drawn. For in-
stance, Liu’s (2015) correlated equilibrium satisfies invariance. And
when Σ 5 ICR (Dekel, Fudenberg, andMorris 2007), ΣB 5 Σ, which also
satisfies invariance. Invariance is important because it allows us to re-
cover the outcomes from any consistent distribution through appropri-
ate randomizations over distributions with smaller supports and, thus,
ensures linearity of the ex-ante payoff (proposition 4 and lemma 3 in
sec. A3).
B. Representations
Information design exhibits a convex structure when seen as belief manip-
ulation. From any consistent t0 and t00, the designer can build a third dis-
tribution, t 5 at0 1 ð1 2 aÞt00, which can be induced by an information
structure, provided that it is Bayes plausible. In particular, this is true even
if t0 and t00 are themselves not Bayes plausible. In technical terms, C is con-
vex and, moreover, admits extreme points.9 In the tradition of extremal
representation theorems,10 the designer generates a consistent and
Bayes-plausible distribution by randomizing over extreme points, and any
consistent and Bayes-plausible distribution can be generated in this way.
By proposition 1, any information structure can thus be interpreted as a
convex combination of extreme points. Importantly, these extreme points
have a useful characterization: they are theminimal consistent distributions
(see lemma 2 in sec. A3). A consistent distribution t ∈ C isminimal if there
is no t0 ∈ C such that supp t0 ⊊ supp t. Let CM denote the set of all minimal
distributions,11 which is nonempty by basic inclusion arguments. From this
definition follows a nice interpretation in terms of information. The mini-
mal distributions correspond to purely private information. By definition,
9 An extreme point of C is an element t ∈ C with the property that if t 5 at01ð1 2 aÞt00,
given t0, t00 ∈ C and a ∈ ½0, 1�, then t0 5 t or t00 5 t.

10 For example, the Minkowski-Caratheodory theorem, the Krein-Milman theorem, and
Choquet’s integral representation theorem.

11 Minimal belief subspaces appeared in contexts other than information design in
Heifetz and Neeman (2006), Barelli (2009), and Yildiz (2015).
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any nonminimal distribution t contains two consistent components with
support supp t 0 and supptnsuppt0. A public signal makes it common
knowledge among the agents which of these two components their be-
liefs are in. Since a minimal belief distribution has only one component,
it contains no such public signal. As such, it is purely private information
(possibly degenerate).
Owing to their mathematical status as extreme points, the minimal

consistent distributions correspond to the basic elements from which
all other consistent distributions can be constructed. In the single-agent
case, the minimal distributions are the agent’s first-order beliefs. The re-
sults below formalize their special role in information design.12

Theorem 1 (Representation theorem). The designer’smaximization
problem can be represented as

sup
ðS ,pÞ

V ðS , pÞ 5 sup
l∈Df ðCMÞ

o
e∈suppl

wðeÞlðeÞ

subject to o
e∈suppl

margVpelðeÞ 5 m0:
(11)

Corollary 1 (Within-betweenmaximizations). For any m ∈ DV, let

w*ðmÞ ≔ sup
e∈CM : margVpe5m

wðeÞ: (12)

Then, the designer’s maximization problem can be represented as

sup
ðS ,pÞ

V ðS , pÞ 5 sup
l∈DfDV

o
suppl

w*ðmÞlðmÞ,

subject to o
suppl

mlðmÞ 5 m0:
(13)

From the representation theorem, thedesignermaximizesher expected
payoff as if she were optimally randomizing over minimal consistent distri-
butions, subject to posterior beliefs averaging to m0 across those distribu-
tions. Every minimal distribution e induces a Bayesian game and leads to
an outcome for which the designer receives expected payoff w(e). Every
minimal distribution has a (marginal) distribution on states, margVpe 5
m, and the “farther” that is from m0, the “costlier” it is for the designer to
use it. In this sense, the constraint in equation (11) can be seen as a form
of budget constraint.
12 We further illustrate the notion of minimal distribution in the supplementary appen-
dix (available online), by characterizing minimal distributions for public and conditionally
independent information.



1382 journal of political economy
The corollary decomposes the representation theorem into two steps.
First, there is a maximization within—given by equation (12)—that takes
place among all the minimal distributions with margVpe 5 m and for all
m. All minimal distributions with the same m contribute equally toward the
Bayes-plausibility constraint; hence, the designer should choose the best
one among them, that is, the one that gives the highest value of w(e). In-
terestingly, maximization within delivers the optimal value of private in-
formation, which takes the form of a value function m↦ w*ðmÞ. The possi-
bility to identify the optimal value of private information comes from the
fact that all minimal distributions represent purely private information.
Second, there is amaximization between that concavifies the value function,

thereby optimally randomizing between the minimal distributions that
maximize within. This step is akin to a public signal l that “sends” all agents
to different minimal distributions e, thus making e common knowledge.
From standard arguments (Rockafellar 1970, 36), the right-hand side of
equation (13) is a characterization of the concave envelope of w*, defined
as ðcavw*ÞðmÞ5 inffg ðmÞ :g concave and g ≥ w*g.Hence, thecorollaryde-
livers a concave-envelope characterization of optimal design. In the one-
agent case, fe ∈ CM such that margVpe 5 mg 5 fmg; hence, w* 5 w in
equation (12) and the theorem reduces to maximization between.
The above decomposition is most useful when maximization within is

performed over a restricted set ofminimal belief distributions. Such restric-
tions aremade in the context of constrained information design. For exam-
ple, in some applications, it may be appropriate to limit the maximization
within to conditionally independent private information. Alternatively,
there are environments in which imposing restrictions can be donewithout
loss of generality. This is shown in the application of the next section, where
consistency, Bayes plausibility, and the payoff externalities impose enough
structure that the unconstrained optimal solution can be computed by re-
stricting maximization within to a small subset of minimal belief distribu-
tions. Whether these restrictions constrain the optimal solution or not,
the restricted set of minimal belief distributions forms the smallest class
of distributions from which that optimal solution can be derived by means
of concavification.
V. Application: Fostering Investment
under Adversarial Selection
Monetary incentives have been used to stimulate investment and tech-
nology adoption (e.g., tax incentives by governments), to stabilize banks
and currencies (e.g., financial interventions by central banks), and to in-
crease efforts in organizations (e.g., compensation schemes by compa-
nies). In such situations, often characterized by coordination motives,
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the strategic provision of information by a third party constitutes a differ-
ent way of leveraging the underlying complementarities.
We consider the problem of fostering investment in an interaction

where two agents are choosing whether or not to invest, {I, N}, given
an uncertain state v ∈ f21, 2g. The payoffs of the interaction are summa-
rized in table 2. Let m0 ≔ Probðv 5 2Þ > 0 denote the probability of the
high state.
Under complete information, each agent has a dominant strategy to

invest when v 5 2 and not to invest when v 5 21. Under incomplete in-
formation, however, a coordination problem arises. An agent with a
“moderate” belief that v 5 2 will invest if and only if he believes that
the other agent is likely enough to invest as well. This gives rise to mul-
tiple equilibria.13

Consider an information-design problem with the following features.

1. The designer wants to stimulate investment and values the comple-
mentarities between agents. This is modeled by a symmetric and
monotone payoff function: vðI, IÞ > vðI, NÞ 5 vðN, IÞ > vðN, NÞ 5
0, such that vðI, IÞ ≥ ð3=2ÞvðI, NÞ. The latter condition includes all
supermodular designers.14

2. The solution concept is BNE.
3. The “min” selection rule, defined in (1), chooses the worst BNE

outcome.

Adversarial equilibrium selection, defined by the min in feature 3, corre-
sponds to a form of robust information design: the designer aims to
maximize the payoff she would obtain if the worst equilibrium for her
were played. When there are multiple equilibria, it is difficult to predict
which one the agents will coordinate on. Therefore, in environments
13 This game
and Shin (2003
mation. It also d
because no equ
of incomplete i
v 521, which

14 Supermod
ð≤Þ vðN, IÞ 1 vð
TABLE 2
Investment Game

(u1, u2) Invest (I) Do Not Invest (N)

Invest (I) v, v v 2 1, 0
Do not invest (N) 0, v 2 1 0, 0
differs in an important way f
), because the coordinatio
iffers from Rubinstein (1989
ilibrium of the complete-in
nformation. For example, (
makes (I, I) sensitive to the
ular (submodular) design
I, NÞ.
romCarlsson
n problem a
), Kajii and M
formation g

N, N) is a do
introduction
ers are tho
and vanDamme (1993) andMorris
rises only under incomplete infor-
orris (1997), and Hoshino (2018),
ame is robust to the introduction
minant equilibrium in the low state
of incomplete information.
se for which vðI, IÞ 1 vðN, NÞ ≥
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where erroneous coordination can be particularly detrimental, it is espe-
cially important that information be designed to secure the highest pos-
sible payoff.
The currentmethod available for Bayes-Nash information design, based

on BCE (see Bergemann and Morris 2016 and Taneva 2019), cannot be
used to solve this problem, because it does not apply to adversarial selec-
tion. To see why, consider any m0 ∈ ½1=2, 2=3Þ. The solution to the BCE
program prescribes to provide no information to the agents, namely,
p*ðI, IjvÞ 5 1 for all v. This is because the BCE method implicitly invokes
themax selection rule (see Bergemann andMorris 2019 for further discus-
sion). Since (I, I) and (N,N) are bothBNE in the absence of any additional
information, themax rule selects (I, I). Instead, under themin rule, (N,N)
will be selected, which results in the smallest possible payoff for the designer.
We use our approach to compute an optimal information structure and
show that, under adversarial selection, the designer can achieve a higher
expected payoff for m0 ∈ ½1=2, 2=3Þ by revealing some information privately
to one of the agents while leaving the other agent uninformed.
A. Worst-Equilibrium Characterization
We begin with a characterization of the worst BNE for the designer. When
an agent believes that v 5 2 with probability larger than 2/3, investing is
uniquely optimal15 for him, irrespective of his belief about the other agent’s
action. Investing can also be uniquely optimal even when an agent’s belief
that v 5 2 is less than 2/3, if that agent believes that the other agent will
invest with large enough probability.
Using the concepts from section III, let rk

i be the set of hierarchies de-
fined inductively as follows:

r1
i 5 ti : b*i ð v 5 2f g � Tj jtiÞ > 2

3

� �
,

rk
i 5 ti : b*i ð v 5 2f g � Tj jtiÞ 1 1

3
b*i ðV � rk21

j jtiÞ > 2

3

� �
:

If agent i’s hierarchy ti is in r1
i , then he believes with probability greater

than 2/3 that v 5 2, and his unique optimal response is to play I. If ti ∈
r2
i , then agent i assigns high enough probability either to v 5 2 or to
agent j playing I (because tj ∈ r1

j ), so that I is again uniquely optimal.
By induction, the same conclusion holds for hierarchies in rk

i for any k ≥
1. Letting ri ≔ [k≥1r

k
i , the unique optimal action for an agent with belief

in ri is I. This implies that, in all BNEs, agent i’s equilibrium strategy
must choose I with certainty when his hierarchy is in ri.
15 Formally, uniquely rationalizable.
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Given a belief distribution t ∈ C, the worst equilibrium for our designer
is such that all agents play I only when their beliefs belong to ri (that is,
only when I is uniquely rationalizable) and play N otherwise: for all i
and ti,

jMIN
i ðIjtiÞ 5

1 if ti ∈ ri ,

0 otherwise:

(
(14)
B. Solution
Following theorem 1 and corollary 1, we solve the information-design
problem in two steps: maximization within and maximization between.
1. Maximization Within
We first characterize the state distributions for which the maximization
within induces joint investment (i.e., investment by both agents) with cer-
tainty in the worst equilibrium. For m > 2=3, each agent invests regardless
of the other’s decision. Therefore, it is optimal to provide no information.
For m < 2=3, instead, information can be used, at least in some cases, to in-
duce joint investment with certainty by exploiting the equilibrium struc-
ture. In these cases, the designer induces some agent (say agent 1) to invest
at a type t1 only on the basis of his first-order belief being greater than 2/3,
that is, t1 ∈ r1

1. Leveraging the presence of t1, the designer can induce a type
t2 of agent 2 to invest, with afirst-order belief lower than 2/3. This type finds
investing uniquely optimal because of the sufficiently high probability it
assigns to t1, that is, t2 ∈ r2

2. This allows for a type t 01 of agent 1 to invest,
with even lower first-order beliefs, on the basis of the probability it as-
signs to t 2, that is, t 01 ∈ r3

1. This chain of reasoning continues for as many
messages as the designer sends, each message corresponding to a differ-
ent hierarchy.
We combine this insight with the conditions of proposition 2 to obtain

a system of inequalities and one equation ([B1]–[B4] in sec. B2), which
characterizes the minimal distributions that induce joint investment
with certainty at m. Simple addition of the inequalities shows that mmust
be greater than 1/2, as stated in the following result.
Claim 1. Joint investment with certainty can be achieved if and only

if m > 1=2.
In themaximization within, revealing no information for m ∈ ð1=2, 2=3Þ

yields no investment in the worst equilibrium. Therefore, the designer has
to reveal some (private) information to induce joint investment with cer-
tainty for this range of m. In fact, for all m ∈ ð1=2, 2=3Þ this can be achieved
with the simple minimal distributions presented in table 3, where ε is a
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small positive number. From claim 1 it follows that the designer can no lon-
ger generate joint investment with certainty for m ≤ 1=2. But can she still
generate enough investment that her value from the maximization within
is relevant for the concavification stage? As we show in the next section, for
many monotone designers the answer is no; hence, maximization within
for m ≤ 1=2 can be dispensed with.
2. Maximization Between
Assuming that the designer does not maximize within for m < 1=2, we ob-
tain a value function ~w*ðmÞ equal to v(I, I) if m > 1=2 and zero otherwise.
This function is plotted (dashed lines) in figure 1 for a designer with
vðI, IÞ 5 2 and vðN, IÞ 5 vðI, NÞ 5 1. The concave envelope of ~w*,

ðcav~w*ÞðmÞ 5
vðI, IÞ if m > 1=2,

2mvðI, IÞ if m ≤ 1=2,

(

is also depicted (solid line) in figure 1.Our next result states that this con-
cave envelope represents the optimal solution. We prove that the value of
maximization within for m ≤ 1=2 cannot be relevant for the concavification,
TABLE 3
Optimal Minimal Distributions for m ∈ (1/2, 2/3)

e*m t2: m2 5 m

t1: m1 5 2/3 1 ε 3(m 2 ε) 2 1
t 01 : m

0
1 5 1=3 1 ε 2 2 3(m 2 ε)
FIG. 1.—Optimal value. A color version of this figure is available online.
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and therefore its computationwithin this range canbeomittedwithout loss of
generality.
Claim 2. ðcav~w*Þðm0Þ is the designer’s optimal expected value at m0.
The optimal belief-hierarchy distribution is as follows: (i) for m0 > 2=3,

reveal no information; (ii) for m0 ∈ ð1=2, 2=3�, use e*m with probability 1;
and (iii) for m0 ≤ 1=2, use a public signal that either draws e*1=21ε with
probability 2m0=ð1 1 2εÞ or makes it common knowledge that v 5 21
with the remaining probability.16 The corresponding optimal informa-
tion structure for m0 ≤ 1=2 is presented in table 4.
C. Extension
When the designer values unilateral investment enough that claim 2 no
longer holds, maximization within may become relevant for m ≤ 1=2, be-
cause its value may dominate ðcav~w*ÞðmÞ. For such designers and state
distributions, the optimal minimal distribution will necessarily put mass
on at least one hierarchy at which N is also rationalizable and will thus be
played in the worst equilibrium. For these hierarchies, lemma 5 in sec-
tion B1 establishes that it is optimal to set the first-order beliefs to zero,
because, for a fixed m, this allows the designer to putmore weight on other
hierarchies that do invest. Therefore, an optimal minimal distribution
can be found by solving our system (eqq. [B1]–[B4]), with as few first-
order beliefs equal to zero as possible to find a solution at each m.17
D. Discussion
Private information plays a central role in the optimal design of robust
incentives under adversarial selection. In our application, private infor-
mation fosters robust investment by making agents uncertain about each
other’s beliefs about the state while, at the same time, making them cer-
tain about each other’s behavior. By giving some information to one of
the agents while leaving the other one uninformed, the designer makes
the latter uncertain about the beliefs of the former in a way that induces
joint investment with certainty. It is sufficient for the uninformed agent
to believe with high enough probability that investing is dominant for
16 Under adversarial selection, an optimal solution may not exist for all m0 (for instance,
at m0 5 1=2 in our example). However, the supremum of theorem 1 can always be ap-
proached with arbitrary precision for all m0. In our example, ðcav~w*Þðm0Þ gives the exact
value of the supremum for all m0. It is obtained by concavifying the function ~w*

ε , equal
to 0 for all m < ð1=2Þ 1 ε and equal to 2 otherwise, and taking the pointwise limit as
ε ↓ 0. The function ~w*

ε corresponds to using e*m from table 3 (which depends on ε) for
m ≥ ð1=2Þ 1 ε and giving no information for lower m.

17 We do not need to compute the maximization within in our example for m < 1=2, be-
cause of claim 2. However, we used our system to compute its value for R 5 L 5 2 (i.e.,
twomessages per player) andhave plotted the result (thedotted line) infig. 1 for completeness.
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the other agent, in order to make investment uniquely optimal for him as
well. In contrast, it is public information that plays the central role under
favorable equilibrium selection.Note that public information can also pro-
vide robust incentives to invest under adversarial selection, but only if it
makes both agents extremely optimistic (with first-order beliefs greater
than 2/3). This use of information, however, is suboptimal, because joint
investment can be achieved through private information, even when
agents are not as optimistic. How this is possible is explained next.
Optimal information disclosure under adversarial selection brings out

two important principles underpinning the role of private information:
the bandwagon effect and extreme pessimism. The bandwagon effect is
the force that provides robust incentives to invest without relying on
agents’ (mutual) extreme optimism about the state. There need be only
one type of one agent (agent 1 of type t1) with first-order beliefs about the
state high enough to make investment strictly dominant at that type.
Then, investing becomes uniquely optimal for the other agent (agent 2
of type t2) under a more pessimistic belief about the state, if he puts suf-
ficiently high probability on agent 1 being extremely optimistic (i.e., on
agent 1 being of type t1). In turn, investing becomes uniquely optimal for
the second type of agent 1 (type t 01), with an even lower first-order belief,
because he is certain that player 2 will always invest. This contagion pro-
cess trades off pessimism about the state for optimism about the other
agent’s investment by taking advantage of the two kinds of payoff comple-
mentarities. This trade-off can be exploited only by informative private
signals.
Just as investment should be induced efficiently, so should be non-

investment. In our application, the designer causes an extreme form of
pessimism, according to which an agent is certain that the state is bad
whenever he chooses not to invest. If, instead, the designer were to in-
duce a moderate belief about the state, at which both actions could be
optimal, depending on coordination, then not investing would be played
in the worst equilibrium. Therefore, the designer should make him as
TABLE 4
Optimal Information Structure for m0 ≤ 1/2

s q

p* (⋅ F v 5 21):
s, s 01

m0

12m0

1=32ε
112ε 0

s, s 001
m0

12m0

2=32ε
112ε 0

q 0 122m012ε
ð12m0Þð112εÞ

p* (⋅ F v 5 2):
s, s 01

2=31ε
112ε 0

s, s 001
1=31ε
112ε 0

q 0 0
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pessimistic as possible, since this does not change his behavior in the
worst equilibrium while allowing the designer to increase the probability
of robust investment. This step also takes advantage of the complemen-
tarities: extremely pessimistic beliefs incentivize noninvestment because
the complementarities between an agent’s action and the state overpower
the strategic complementarities. This allows the designer to putmore prob-
ability on higher beliefs at which the bandwagon effect induces robust in-
vestment. Extreme pessimism also emerges in the solution to the single-
agent problem of Kamenica and Gentzkow (2011), in which the agent is
certain about the state when taking the undesirable (to the designer) ac-
tion. As in our application, this in turn allows the designer to induce the
desirable action with maximal probability, subject to Bayes plausibility.
VI. Conclusion
This paper contributes to the foundations of information design withmul-
tiple interacting agents. Our representation results formulate the belief-
based approach to the problem and decompose it into maximizations
within and between, where the latter is concavification. This approach ac-
commodates various equilibrium-selection rules and solution concepts,
which can be used to analyze diverse topics, such as robustness, bounded
rationality, collusion, and communication.We provide an economic appli-
cation based on a two-agent investment game and apply our approach to
solve the information-design problemunder adversarial equilibrium selec-
tion. An obvious avenue for future research is to generalize this robust in-
formation design to a class of games with strategic complementarities, for
which our results from the investment game provide the fundamental logic.
Examining the implications of heterogenous prior distributions among
the agents is another interesting extension of the current framework.
Appendix A

Proofs of Main Results

A1. Proof of Proposition 1

Let t be induced by some (S, p), so that

tðtÞ 5 o
v

pðfs : hðsÞ 5 tgjvÞm0ðvÞ (A1)

for all t ∈ supp t. Define p ∈ DðV � T Þ as
pðv, tÞ 5 pðfs : hðsÞ 5 tgjvÞm0ðvÞ (A2)

for all v and t ∈ supp t. It is immediate from equations (A1) and (A2) that
margT p 5 t and so margTi

p 5 ti for all i. Further, when any agent i forms his
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beliefs under (S, p), he computes mi : Si → DðV � S2iÞ by conditioning pðsjvÞm0ðvÞ
on si, so that b*i : Ti →DðV � T2iÞ is given by the conditional of p, given ti. That is,

pðv, tÞ 5 b*i ðv, t2i jtiÞmargTi
pðtiÞ

for all i, v, and t ∈ supp t. This shows that t ∈ C. Finally,

o
ti∈supp ti

b*i ðvjtiÞtiðtiÞ ≔ o
t∈supp t

pðv, tÞ 5 o
t

pðfs : hðsÞ 5 tgjvÞm0ðvÞ 5 m0ðvÞ

for all v, which proves Bayes plausibility.
Suppose now that t ∈ C and satisfies Bayes plausibility. Let us show that these

conditions are sufficient for t to be induced by some (S, p). Define information
structure (supp t, pt), where

ptðtj�Þ : v↦ 1

m0ðvÞ b
*
i ðv, t2i jtiÞtiðtiÞ (A3)

for all t ∈ supp t, which is defined independently of the choice of i because t ∈ C.
First, let us verify that pt is a valid information structure. Bayes plausibility says

o
ti∈supp ti

b*i ðvjtiÞtiðtiÞ 5 m0ðvÞ,

which guarantees that

o
t∈supp t

ptðtjvÞ 5 1

m0ðvÞ o
t∈supp t

b*i ðv, t2i jtiÞtiðtiÞ 5 1,

(i.e., pð�jvÞ is a probability distribution for every v). By construction, this informa-
tion structure is such that, when any agent j receives tj, his beliefs are mjð�jtjÞ 5
b*j ð�jtjÞ, also because t ∈ C. To prove that pt generates t, we also need to check that

tðtÞ 5 o
v

ptðtjvÞm0ðvÞ (A4)

for all t ∈ supp t. By (A3), the right-hand side of equation (A4) is equal to
b*i ðt2i jtiÞtiðtiÞ, which equals t(t) because t ∈ C (in particular, because margVp 5
t). QED

A2. Proof of Proposition 2

Suppose t is consistent and Bayes plausible. By definition, there exists a common
prior p ∈ DðV � T Þ such that, for all t, v, and i,

pðv, tÞ 5 b*i ðv, t2i jtiÞpðtiÞ
and margT p 5 t. Moreover, by Bayes plausibility, margVp 5 m0. Define nðvjtÞ ≔
pðvjtÞ for all t and v. We show that conditions (7)–(9) are satisfied. First,

ottðtÞnðvjtÞ 5 ot pðtÞpðvjtÞ

5 ot pðtÞ
pðv, tÞ
pðtÞ

5 m0ðvÞ:
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Moreover, since p is a common prior, pðv, t2i jtiÞ 5 b*i ðv, t2i jtiÞ and pðt2i jtiÞ 5
b*i ðt2i jtiÞ for all i, t, and v. Thus, for all i, t, and v,

nðvjti , t2iÞ ≔ pðvjti , t2iÞ 5 pðv, t2i jtiÞ
pðt2i jtiÞ 5 b*i ðvjti , t2iÞ:

Finally, since margT p 5 t and p is a common prior,

tðt2i jtiÞ 5 pðt2i jtiÞ 5 b*i ðt2i jtiÞ

for all i and t.
Now, consider t ∈ DfðT Þ and n : supp t→ DV such that conditions (7)–(9)

hold. Define p ∈ DðV � T Þ as pðv, tÞ ≔ tðtÞnðvjtÞ for all v and t. We want to show
that p is a common prior for t. First, note that, by definition of p, pðtÞ 5
ovpðv, tÞ 5 tðtÞovnðvjtÞ 5 tðtÞ, for all t. Therefore, margT p 5 t. Second, for all
i, t, and v,

pðv, t2i jtiÞ 5 pðv, tÞ
pðtiÞ

5
tðtÞnðvjtÞ

tðtiÞ
5 tðt2i jtiÞnðvjtÞ
5 b*i ðt2i jtiÞb*i ðvjtÞ 5 b*i ðv, t2i jtiÞ:

The first equality comes from Bayes’s rule and the second equality comes from
the definition of p. In the fourth equality, we used conditions (8) and (9). Finally,
in the last equality, we used the definition of b*i ðvjti , t2iÞ. This implies that pðv, tÞ 5
b*i ðv, t2i jtiÞpðtiÞ for all v, t, and i. Therefore, p is a common prior for t or, equiva-
lently, t ∈ C. Finally, t is Bayes plausible because, given condition (7),

pðvÞ 5 o
t

pðv, tÞ 5 o
t

tðtÞnðvjtÞ 5 m0ðvÞ,

for all v. QED

A3. Proof of Theorem 1

Lemma 1. C is convex.
Proof. Take a ∈ ½0, 1� and t0, t00 ∈ C. By definition of C, there are pt0 and pt00

such that margT pt0 5 t0 and margT pt00 5 t00 and

pt0 ðv, tÞ 5 b*i ðv, t2i jtiÞt0iðtiÞ,
pt00 ðv, tÞ 5 b*i ðv, t2i jtiÞt00i ðtiÞ,

(A5)

for all v, i, and t. Define t ≔ at0 1 ð1 2 aÞt00, and note that ti 5 at0i 1 ð1 2 aÞt00i ,
by the linearity of the Lebesgue integral. Define

ptðv, tÞ ≔ b*i ðv, t2i jtiÞtiðtiÞ
for all i, v, and t ∈ supp t. Note that pt is well defined, because of equation (A5).
Thus,
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margT pt 5 amargT pt0 1 ð1 2 aÞmargT pt00 5 at0 1 ð1 2 aÞt00 5 t,

and we conclude that t ∈ C. QED
Although C is convex, it is not closed because we can build sequences in C with

growing supports, converging to a belief-hierarchy distribution only with an infi-
nite support. Still, the next lemma proves that minimal (consistent) distributions
are the extreme points of the set of consistent distributions.

Lemma 2. E 5 CM.
Proof. First, we show that CM ⊆ E. Take t ∈ CM. If t ∉ E, then there exist

t0, t00 ∈ C with t0 ≠ t00 and a ∈ ð0, 1Þ such that t ≔ at0 1 ð1 2 aÞt00. Since
t ∈ CM, t ∈ C. Moreover, supp t0 [ supp t00 ⊆ supp t. For l ∈ R1, let tl ≔
t 1 lðt 2 t00Þ, which is a linear combination between t 0 and t 00. Indeed, by con-
struction t 2 t00 5 aðt0 2 t00Þ, and therefore we can rewrite tl 5 að1 1 lÞt01
½1 2 að1 1 lÞ�t00. Clearly, ot∈suppttlðtÞ 5 1 for all l ∈ R1. Define L ≔ fl ≥
0 : 8 t ∈ supp t, 0 ≤ tlðtÞ ≤ 1g so that, by construction, tl ∈ C for all l ∈ L.
Next, we establish a number of simple properties of L. The set L is nonempty, since
both l 5 0 and l 5 ð1 2 aÞ=a belong to it, which can be verified by substitution.
Moreover, it is easy to check that L is convex. The set L is closed. To see this, it is
enough to consider any increasing sequence ðlmÞ ⊂ L∞ such that lm ↗ l. We want
to show that l ∈ L. For all t ∈ suppt, by definition of t, the sequence tlm

ðtÞ ismono-
tone (either nondecreasing or nonincreasing), and, by definition ofL, it lives in the
compact interval [0, 1]. Therefore, it converges in limm tlm

ðtÞ ∈ ½0, 1�.Hence,l ∈ L.
Therefore, we can write L 5 ½0, ~l�, where ~l ≔ maxL ≥ ð1 2 aÞ=a > 0.

We want to show that supp t~l ⊊ supp t. To see this, let~t ∈ supp t~l, and suppose
that ~t ∉ supp t. Then, by definition, t~lð~tÞ 5 2~lt00ð~tÞ ≤ 0, which is impossible.
Moreover, there must exist t ∈ supp t such that t~lðtÞ 5 0. To see this, suppose
not; that is, suppose that suppt 5 suppt~l. Then, for all t ∈ supp t, we would
have that t~lðtÞ > 0. Since t~l ∈ C by construction, and since jsupp tj > 1 (otherwise
t0 5 t00), we also have that t~lðtÞ < 1 for all t ∈ supp t. Let T2 ≔ ft ∈
supp t : tðtÞ 2 t00ðtÞ < 0g and T1 ≔ ft ∈ supp t : tðtÞ 2 t00ðtÞ > 0g. These sets
are nonempty by assumption (t0 ≠ t00). For t ∈ T2, let lðtÞ ≔ 2tðtÞ=ðtðtÞ2
t00ðtÞÞ, and note that 0 5 tðtÞ 1 lðtÞðtðtÞ 2 t00ðtÞÞ < t~lðtÞ, implying that
lðtÞ > ~l. Similarly, for t ∈ T1, let lðtÞ ≔ ð1 2 tðtÞÞ=ðtðtÞ 2 t00ðtÞÞ, and note that
1 5 tðtÞ 1 lðtÞðtðtÞ 2 t00ðtÞÞ > t~lðtÞ, implying that lðtÞ > ~l. Now define l0 ≔
minflðtÞ :t ∈ T1 [ T2g, which is well defined, since T1 [ T2 is finite. By con-
struction, tl0 ∈ C and l0 > ~l, a contradiction to the fact that ~l is the maximum.
Therefore, we conclude that supp t~l ⊊ supp t and thus that t ∉ CM.

We now show the converse, CM ⊇ E. Suppose that t ∈ C is not minimal, that is,
that there is a ~t ∈ C such that supp~t⊊ suppt. Define t0, t00 ∈ DT as t0ð�Þ ≔
tð�jsupp~tÞ and t00ð�Þ ≔ tð�jsuppt ∖ supp~tÞ, the conditional distributions of t on
supp~t and supp t ∖ supp~t, respectively. Clearly,

t 5 at0 1 ð1 2 aÞt00, (A6)

where a 5 tðsupp~tÞ ∈ ð0, 1Þ. Since supp~t is belief closed, so is supp t ∖ supp~t. To
see why, note that for any t ∈ supp t ∖ supp~t, if there were i,~t ∈ supp~t, and v ∈ V

such that ptðv,~t2i jtiÞ > 0, then this would imply ptðv, ti ,~t2iÞ > 0 and, thus,
ptðv, ti ,~t2ðijÞj~tjÞ > 0 (where ~t2ðijÞ are the hierarchy profiles for agents other than i



information design in games 1393
and j). This implies that at ~tj—a hierarchy that agent j can have in ~t—agent j as-
signs strictly positive probability to a hierarchy of agent 1 that is not in supp~t. This
contradicts the fact that supp~t is belief closed. Since t 0 and t 00 are derived from a
consistent t and are supported on a belief-closed subspace, t 0 and t 00 are consis-
tent. Given that t00 ≠ t0, equation (A6) implies that t is not an extreme point. QED

Proposition 3. For any t ∈ C, there exist unique fe‘gL
‘51 ⊆ CM and weakly pos-

itive numbers fa‘gL
‘51 such that oL

‘51a‘ 5 1 and t 5 oL
‘51a‘e‘.

Proof. Take any t ∈ C. Either t is minimal, in which case we are done, or it is
not, in which case there is t0 ∈ C such that suppt0 ⊊ supp t. Similarly, either t0 is
minimal, in which case we conclude that there exists a minimal e1 ≔ t0 such that
suppe1 ⊊ supp t, or there is t00 ∈ C such that suppt00 ⊊ supp t0. Given that t has fi-
nite support, finitely many steps of this procedure deliver a minimal consistent
belief-hierarchy distribution e1, suppe1 ⊊ supp t. Since t and e1 are both consistent,
and hence their supports are belief closed, suppt ∖ suppe1 must be belief closed.
Given that supp t ∖ suppe1 is a belief-closed subset of supp t and t is consistent, de-
fine a new distribution t as

pt2ðv, tÞ ≔ ptðv, tÞ
tðsupp t ∖ suppe1Þ

for all v ∈ V and t ∈ supp t ∖ suppe1. By construction, suppt2 5 supp t ∖ suppe1.
Moreover, since t ∈ C, ptðv, tÞ 5 b*i ðv, t2i jtiÞtðtiÞ for all v ∈ V, t ∈ supp t, and i.
Hence,

pt2ðv, tÞ 5 ptðv, tÞ
tðsupp t2Þ 5

b*i ðv, t2i jtiÞtðtiÞ
tðsupp t2Þ 5 b*i ðv, t2i jtiÞt2ðtiÞ

for all v ∈ V, t ∈ suppt2, and i. In addition,

margT pt2ðv, tÞ 5
margT ptðv, tÞ
tðsupp t2Þ 5

tðtÞ
tðsupp t2Þ 5 t2ðtÞ

for all v ∈ V and t ∈ suppt2. Hence, t2 ∈ C. Therefore, we can repeat the pro-
cedure for distribution t2 ∈ C. Since t has finite support, there exists L ∈ N such
that, after L steps of this procedure, we obtain a consistent belief-hierarchy distri-
bution tL that is also minimal. We denote eL ≔ tL, and our procedure terminates.
By construction, we have that for each t ∈ supp t there exists a unique ‘ ∈
f1, ::: , Lg such that t 5 e ‘tðsuppe ‘Þ. Therefore, t 5 oL

‘51a‘e ‘, where a‘ ≔
tðsuppe ‘Þ > 0 and oL

‘51a‘ 5 oL
‘51tðsuppe ‘Þ 5 1.

Finally, we prove uniqueness. By way of contradiction, suppose that t admits
two minimal representations, that is,

t 5 o
‘

a‘e
‘ 5 o

k

yk ê
k

such that e ‘ ≠ ê k for some ‘, k. This implies that for some t ∈ suppt and some ‘, k,
it holds that t ∈ suppe ‘ \ suppê k , with e ‘ ≠ ê k . Two cases are possible:

i. supp e ‘ ≠ supp ê k Since e ‘, ê k ∈ C, suppe ‘ and supp ê k are belief closed,

which in turn implies thatT ‘,k ≔ suppe ‘ \ suppê k (nonempty by assumption)
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is also belief closed. Therefore, there exists a distribution e ‘,k supported on
T ‘,k and described by

pe ‘,k ðv, tÞ ≔ ptðv, tÞ
tðT ‘,kÞ

for all v ∈ V and t ∈ T ‘,k , which is consistent, and suppe ‘,k ⊊ suppe ‘. This
contradicts the minimality of e ‘.
ii. supp e ‘ 5 supp ê k Since e ‘, ê k ∈ C, there exist common priors p and p̂ in

DðV � T Þ such that margT p 5 e‘ and margT p̂ 5 ê k . Thus, suppmargT p 5
suppmargT p̂. This implies that suppp 5 suppp̂ (if not, without loss there
would exist some i, ~t ∈ suppmargT p, and ~v ∈ V, such that bið~v,~t2i j~tiÞ > 0,
while for all i and t ∈ suppmargT p̂, bið~v, t2i jtiÞ 5 0. This would contradict
suppmargT p 5 suppmargT p̂). By propositions 4.4 and 4.5 in Mertens and
Zamir (1985), there can be only one common prior with a given finite support
in DðV � T Þ, hence p 5 p̂. In turn, e ‘ 5 ê k , which contradicts that e ‘ ≠ ê k .
QED
Now, we prove linearity of w. The point is to show that the set of outcomes of
a mixture of subspaces of the universal type space can be written as a similar mix-
ture of the sets of outcomes of these respective subspaces.

For any t0, t00 ∈ C, let
aOL0 t0ð Þ 1 ð1 2 aÞOL00 t00ð Þ ≔ ag0 1 ð1 2 aÞg00 : g0 ∈ OL0 t0ð Þ and g00 ∈ OL00 t00ð Þf g:

(A7)

Proposition 4. If ΣB is invariant, then for all t0, t00 ∈ C and t 5 at0 1 ð1 2 aÞt00

with a ∈ ½0, 1� and for all L ∈ ΣBðtÞ, there are L0 ∈ ΣBðt0Þ and L00 ∈ ΣBðt00Þ such
that

OL tð Þ 5 aOL0 t0ð Þ 1 ð1 2 aÞOL00 t00ð Þ: (A8)
Proof. Take any t0, t00 ∈ C and a ∈ ½0, 1�, and let t 5 at0 1 ð1 2 aÞt00. Take any
L ∈ ΣBðtÞ and j ∈ L. Define

gjða, vÞ ≔ o
t∈suppt

jðajtÞptðt, vÞ 8 ða, vÞ, (A9)

so that OLðtÞ 5 fgj : j ∈ Lg. It follows from invariance thatL0 ≔ fjjsuppt0 : j ∈ Lg is
in ΣBðt0Þ and that L00 ≔ fjjsupp t00 : j ∈ Lg is in ΣBðt00Þ. Moreover, note that

jjsupp t0\suppt00 : j ∈ L
� �

5 j0jsuppt0\suppt00 : j0 ∈ L0� �
5 j00jsuppt0\suppt00 : j00 ∈ L00� �

:

Now define

g0
jða, vÞ ≔ o

t∈supp t0
jjsuppt0 ajtð Þpt0 v, tð Þ 8 ða, vÞ,

g00
jða, vÞ ≔ o

t∈supp t00
jjsuppt00 ajtð Þpt00 v, tð Þ 8 ða, vÞ,
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so that OL0 ðt0Þ 5 fg0
j : j ∈ Lg and OL00 ðt00Þ 5 fg00

j : j ∈ Lg. Since pt 5 apt0 1 ð1 2
aÞpt00 , (A9) implies that for all j ∈ L, a, and v,

gða, vÞ 5 o
t∈suppt

j ajtð Þ apt0 v, tð Þ 1 1 2 að Þpt00 v, tð Þð Þ

5 a o
t∈suppt0

jjsuppt0 ajtð Þpt0 v, tð Þ 1 1 2 að Þ o
t∈suppt00

jjsuppt00 ajtð Þpt00 v, tð Þ

5 ag0 a, vð Þ 1 1 2 að Þg00 a, vð Þ:
Hence, OLðtÞ 5 aOL0 ðt0Þ 1 ð1 2 aÞOL00 ðt00Þ: QED

Lemma 3. The function w is linear over C.
Proof. Take any t0, t00 ∈ C and a ∈ ½0, 1�, and let t 5 at0 1 ð1 2 aÞt00. By prop-

osition 4, we know that for all sequences (Ln) in ΣB(t), there exist sequences ðL0
nÞ

in ΣB(t0) and ðL00
nÞ in ΣB(t00) such that

OLn
ðtÞ 5 aOL0

n
ðt0Þ 1 ð1 2 aÞOL00

n
ðt00Þ 8 n:

Since g is linear,

o
v,a

g ðOLn
ðtÞÞða, vÞvða, vÞ5 o

v,a

g ðaOL0
n
ðt0Þ1 1 2 að ÞOL00

n
ðt00ÞÞða, vÞvða, vÞ

5 ao
v,a

g OL0
n
ðt0Þð Þvða, vÞ1 12að Þo

v,a

g OL00
n
ðt00Þð Þðv, aÞvða, vÞ:

(A10)

Choose ð�LnÞ in ΣB(t) such that wðtÞ 5 limx →∞ov,ag ðO�Ln
ðtÞÞða, vÞvða, vÞ, ð�L0

nÞ in
ΣB(t0) such that wðt0Þ 5 limx →∞ov,ag ðO�L0

n
ðt0ÞÞða, vÞvða, vÞ, and ð�L00

nÞ in ΣB(t00) such
that wðt00Þ 5 limx →∞ov,ag ðO�L00

n
ðt00ÞÞða, vÞvða, vÞ. By equation (A10), it must be that

w tð Þ 5 lim
n→∞o

v,a

g O�Ln
tð Þð Þ a, vð Þv a, vð Þ

≤ alim
n →∞o

v,a

g O�L0
n
t0ð Þð Þv a, vð Þ 1 1 2 að Þlim

n→∞o
v,a

g O�L00
n
t00ð Þð Þ a, vð Þv a, vð Þ

5 aw t0ð Þ 1 1 2 að Þw t00ð Þ:

Next, choose ðL0
nÞ in ΣB(t 0) and ðL00

nÞ in ΣB(t00) such that

aw t0ð Þ 1 1 2 að Þw t00ð Þ 5 alim
n →∞o

v,a

g ðOL0
n
ðt0ÞÞvða, vÞ

1 1 2 að Þlim
n→∞o

v,a

g OL00
n
ðt00Þð Þðv, aÞvða, vÞ

(A11)

and such that

j0jsuppt0\suppt00 : j0 ∈ L0
n

� �
5 j00jsuppt0\suppt00 : j00 ∈ L00

n

� �
≕L000

n :

Note that the above restriction to sequences describing the same behavior
over suppt0 \ suppt00 is without loss, because a maximizing designer must be
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indifferent between their selected outcomes. Therefore, the right-hand side of
equation (A11) can be written as

a lim
n→∞o

v,a

g ðO~L0
n
ð~t0ÞÞvða, vÞ 1 1 2 að Þlim

n →∞o
v,a

g O~L00
n
ð~t00Þð Þðv, aÞvða, vÞ

1 lim
n →∞o

v,a

g OL000
n
ðt000Þð Þðv, aÞvða, vÞ

(A12)

for some sequences ð~L0
nÞ in ΣBð~t0Þ, ð~L00

nÞ in ΣBð~t00Þ, and ðL000
n Þ in ΣBðt000Þ, where ~t0 is

the consistent distribution with support suppt0 ∖ suppt00, ~t00 is the consistent dis-
tribution with support suppt00 ∖ suppt0, and t000 is the consistent distribution with
support suppt00 \ suppt0. By applying invariance (twice),

~Ln ≔ j : suppt→DA jj jsupp~t0 ∈ ~L0
n, jjsupp~t00 ∈ ~L00

n and jjsuppt000 ∈ L000
n

� �
must be in ΣB(t), which, together with linearity of g, ensures that equation (A12)
is equal to

lim
n→∞o

v,a

g O~Ln
tð Þð Þv a, vð Þ 5 w tð Þ:

Hence, we obtain wðtÞ 5 awðt0Þ 1 ð1 2 aÞwðt00Þ. QED
Proof of theorem 1.—Fix a prior m0 ∈ DðVÞ, and take any information structure (S,

p). From proposition 1, it follows that (S, p) induces a consistent belief-hierarchy
distribution t ∈ C such that margVpt 5 m0. By definition of ΣB and w, we have
V ðS , pÞ ≤ wðtÞ and, thus, supðS ,pÞ V ðS , pÞ ≤ supfwðtÞjt ∈ C and margVpt 5 m0g.
Moreover, proposition 1 also implies that, for t ∈ C such that margVpt 5 m0, there
exists an information structure (S, p) that induces t and such that V ðS , pÞ 5 wðtÞ.
Therefore, supðS ,pÞV ðS , pÞ ≥ supfwðtÞjt ∈ C and margVpt 5 m0g. We conclude
that

sup
ðS ,pÞ

V ðS , pÞ 5 sup
t ∈ C

margVpt 5 m0

wðtÞ: (A13)

By proposition 3, there exists a unique l ∈ DfðCMÞ such that t 5 oe∈suppllðeÞe.
Since p and marg are linear,

margVpt 5 margVpo
e

lðeÞe 5 o
e∈suppl

lðeÞmargVpe :

Then, by lemma 3 and equation (A13), we have

sup
S ,pð Þ

V ðS , pÞ 5 sup
l∈Df ðCMÞ

o
e

wðeÞlðeÞ

subject too
e

margVpe lðeÞ 5 m0,
(A14)

which concludes the proof. QED
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Appendix B

Appendix of the Application

B1. Bandwagon Effect and Extreme Pessimism

We first show that, given the structure of the worst equilibrium, in any optimal
distribution with m hierarchies in total, an agent invests at hierarchy ti in the
worst equilibrium if and only if ti rationalizes I uniquely on the basis of beliefs
of order m or lower.

Lemma 4 (Bandwagon effect). Suppose that t* is an optimal belief-hierarchy
distribution. Let m 5 oi51,2jsuppt*i j. Then, for all i and ti ∈ suppt*i , j

MIN
i ðIjtiÞ 5 1

if and only if ti ∈ [m
k51r

k
i .

Proof. The “if” part follows from equation (14) and [m
k51r

k
i ⊆ [k≥1r

k
i . The “only

if” part we prove by contradiction. Suppose that t̂i ∈ suppt*i and jMIN
i ðIĵtiÞ51,

but t̂i ∉ [m
k51r

k
i . Then, by equation (14) it must be that t̂i ∈ [k≥m11r

k
i . Note that

rk
i ⊆ rk11

i for all k ≥ 1. Thus, for any ti ∈ ri , there exists a number k*ðtiÞ ∈ N 1

such that ti ∈ r
k*ðtiÞ
i and ti ∉ r

k*ðtiÞ21
i , where r0

i 5 ∅. That is, k*(ti) is the smallest
k such that ti ∈ rk

i . Let n ≥ 1 be such that k*ð̂tiÞ 5 m 1 n. That is, t̂i ∈ rm1n
i ,

and by definition

b*i ðfv 5 2g � Tj ĵtiÞ 1 1

3
b*i ðV � rm1n21

j ĵtiÞ > 2

3
,

while t̂i ∉ rm1n21
i , and thus

b*i ðfv 5 2g � Tj ĵtiÞ 1 1

3
b*i ðV � rm1n22

j ĵtiÞ ≤
2

3
:

This implies that b*i ðV � rm1n21
j ĵtiÞ > b*i ðV � rm1n22

j ĵtiÞ, hence rm1n22
j ⊊ rm1n21

j .
Therefore, there exists ~tj ∈ rm1n21

j such that~tj ∉ rm1n22
j , hence k*ð~tjÞ5 m1n 2 1.

By the same argument, there exists ~ti such that k*ð~tiÞ 5 m 1 n 2 2, and so on.
This process continues for m 1 n 2 1 steps in total; that is, there must be �tj such
that k*ð�tjÞ 5 1 if m 1 n is even or �ti such that k*ð�tiÞ 5 1 if m 1 n is odd. Hence,
there must be at least m 1 n different hierarchies, which contradicts m 5
oi51,2jsuppt*i j. QED

An implication of lemma 4 is that there is an optimal t* such that for every
k 5 2, : : : :,m it holds that either suppt*i \ rk

i 5 ∅ for i 5 1, 2 or suppt*i \
rk
i 5 tki , suppt

*
i \ rk21

i 5 ∅, and suppt*j \ rk21
j 5 tk21

j for j ≠ i, i 5 1, 2. Next,
we show that it is never optimal to induce a belief hierarchy at which an agent
has multiple rationalizable actions. In particular, the hierarchies that rationalize
action N are optimally set to have first-order beliefs of zero, that is, extreme
pessimism.

Lemma 5 (Extreme pessimism). If t* is an optimal belief-hierarchy distribu-
tion and if there is a BNE j such that jiðN jtiÞ > 0 for some i and ti ∈ suppt*i , then
b*i ðv 5 2jtiÞ 5 0.

Proof. Consider a consistent and Bayes-plausible optimal minimal distribu-
tion t centered at m > 0. First, we argue that, since t is optimal, it must be that
for both i there exists ti ∈ suppti such that ti ∈ ri . If not, t would be strictly dom-
inated by t̂ 5 x � tð2=3Þ1ε 1 ð1 2 xÞ � t0 with x 5 minfm=½ð2=3Þ 1 ε�, 1g, where t�m is
a hierarchy profile at which b*i ðv 5 2jtiÞ 5 �m for all i is common knowledge.
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Indeed, the designer’s expected payoff under t̂ in the worst equilibrium is
x � vðI, IÞ 1 ð1 2 xÞ � vðN, NÞ. Instead, if for some i, ti ∉ ri for all ti ∈ suppti , the
designer’s expected payoff is bounded above by x � vðI, NÞ 1 ð1 2 xÞ�vðN, NÞ,
which is strictly smaller than the payoff under t̂.

By way of contradiction, suppose that for some agent i we have ~ti ∈ suppti
such that ~ti ∉ ri and b*i ðv 5 2j~tiÞ > 0. Therefore, in the worst equilibrium, agent
i will play N at ~ti ; that is, jMIN

i ðIj~tiÞ 5 0.
By lemma 4, we know that any investing ti is in [m

k51r
k
i and there is a unique

tki ∈ ðrk
1 [ rk

2Þ \ suppti . Consider the distribution p 0 obtained from pt by trans-
ferring all theprobabilitymassotj ptð~ti , tj , v 5 2Þ, as describedbelow. This operation
changes the hierarchies in supp pt according to fi : suppmargTi

pt → suppmargTi
p 0

for all i.

A.
i. If suppti \ r1

i ≠ ∅, then p 0ðfi ðt1i Þ, fj ðtjÞ, v 5 2Þ 5 ptðt1i , tj , v 5 2Þ1
ptð~ti , tj , v 5 2Þ for all tj.

ii. If suppti \ r1
i 5 ∅ and m is even, then p 0ðfi ðt2ki Þ, fj ðt2k21

j Þ, v 52Þ 5
ptðt2ki , t2k21

j , v 5 2Þ 1 ptð~ti , t2k21
j , v 5 2Þ for all k 5 1, ::: ,m=2.

iii. If suppti \ r1
i 5 ∅ and m is odd, then p 0ðfi ðt2ki Þ, fj ðt2k21

j Þ,v 5 2Þ 5
ptðt2ki , t2k21

j , v 5 2Þ 1 ptð~ti , t2k21
j , v 5 2Þ for all k 5 1, ::: , ðm 1 1Þ=2,

where tm11
i is a new hierarchy with p 0ðtm11

i , fj ðtjÞ, v 5 21Þ 5 0 for all tj.

B. p 0ðfi ð~tiÞ, fj ðtjÞ, v 5 2Þ 5 0 for all tj, and
C. p 0ðfi ðtiÞ, fj ðtjÞ, vÞ 5 ptðti , tj , vÞ otherwise.
Now, consider the belief-hierarchy distribution t0 induced by p0. By construc-

tion of p 0, conditions A–C ensure that the beliefs of all (relevant) orders have
weakly increased for both agents in all hierarchies, except for ~ti . Therefore, if
agent i with hierarchy ti ∈ Ti ∖f~tig has uniquely rationalizable action I, and hence
plays I in any equilibrium under t, this also holds for agent i with hierarchy fi(ti)
under t 0. On the other hand, agent i with hierarchy ~ti played N in the worst equi-
librium under t, and this continues to hold for agent i with hierarchy fi ð~tiÞ under
t 0. Moreover, t 0 necessarily Bayes plausible (since it is induced by p 0). Finally, again
by construction of p0, probability mass has been transferred only from non-
investing to investing types; hence, a designer with symmetric and monotone
payoffs must have a strictly higher expected payoff under t 0 than under t, a con-
tradiction. QED

B2. Characterization of the Optimal Minimal Distributions

The above lemmas imply that optimal design takes a special form in this exam-
ple. First, if it is necessary to induce N, then by lemma 5 the designer should do it
by making the agent extremely pessimistic about the state. In this way, for a given
m, the designer can put higher probability on hierarchies that induce I. Second,
lemma 4 implies that optimal design incentivizes joint investment through con-
tagion, which we call the “bandwagon effect.” To uniquely rationalize joint invest-
ment, on the basis of agents’ beliefs of bounded order, some hierarchy of an agent
must initiate investment by having first-order beliefs greater than 2/3. For any
given m, it is never optimal to putmass onmore than one such “first-order investor”
hierarchy, because we can induce the other agent to invest at lower (than 2/3)



information design in games 1399
first-order beliefs, if he puts a sufficiently high probability on that first-order
investor. Likewise, it is optimal to have only one such “second-order investor,” as we
may induce the agent with the first-order investor hierarchy to now invest at a dif-
ferent hierarchy with even lower first-order beliefs, if he puts a sufficiently high
probability on that second-order investor hierarchy of his opponent. By proceed-
ing in this way, we generate the lowest possible first-order beliefs overall and thus
generate joint investment with certainty at the lowest possible state distribution m.
When joint investment can no longer be sustained, and N has to be played with
positive probability, we set the first-order beliefs of the highest-order investor hier-
archies to zero, by virtue of lemma 5.

For an arbitrary m < ∞, suppose the designer sends m messages in total in the
maximization within. Let us index each hierarchy of agent 1 by l 5 1, ::: , L and
each of agent 2 by r 5 1, ::: , R . By lemmas 4 and 5, the optimal minimal distri-
butions will have either L 5 R 5 m=2 if m is even, or L 5 ðm 1 1Þ=2 and
R 5 ðm 2 1Þ=2 if m is odd.

Given a commonly known m ≔ Probðv 5 2Þ, denote an optimal minimal distri-
bution e*m by

e*m t2,1 : : : t2,r : : : t2,R

t1,1 A11 ⋯ A1r : : : A1R

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

t1,l Al1 ⋯ Alr : : : AlR

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

t1,L AL1 ⋯ ALr : : : ALR

where all entries Alr are positive and ol ,rAlr 5 1. Define A1
l ≔ orAlr and A2

r ≔ olAlr .
Let ml

1 ≔ b*1 ðv 5 2jt1,lÞ and mr
2 ≔ b*2 ðv 5 2jt2,r Þ denote the agents’ first-order be-

liefs at the respective hierarchies.
For m > 2=3, the optimal minimal distribution is given by table B1, where

m1
i 5 m for i 5 1, 2. The designer simply lets agents act under common knowl-

edge of m, as investment is uniquely optimal in this range.
For m ≤ 2=3, the following system yields the optimal minimal distributions e*m

such that all agents invest at all ti:f orA1rm
1r

A1
1

>
2

3
, (B1)

olAlrm
lr

A2
r

1
1

3
or

l51Alr

A2
r

>
2

3
for r 5 1, ::: , R , (B2)

orAlrm
lr

A1
l

1
1

3
ol21

r51Alr

A1
l

>
2

3
for l 5 2, ::: , L, (B3)

o
l ,r

Alrm
lr 5 m: (B4)

where mlr ≔ b*ðv 5 2jt1,l , t2,r Þ denotes the designer’s belief that v 5 2, given the
profile of agents’ hierarchies (t1,l, t 2,r). We have used proposition 2 and
lemma 4 to construct this system (eqq. [B1]–[B4]). Indeed, we have incorporated
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conditions (7)–(9) from proposition 2: all agents’ first-order beliefs should be a
tðt2i jtiÞ-weighted average of the designer’s beliefs. For example, in condition (B1),

m1
1 ≔ orA1rm

1r

A1
1

represents agent 1’s (first-order) belief that v 5 2 at t1,1. Likewise, the first expres-
sions on the left-hand side of conditions (B2) and (B3) represent first-order be-
liefs mr

2 and ml
1, respectively. Condition (B4) captures condition (7) from prop-

osition 2.
Inequalities (B1)–(B3) are the investment constraints inherited from the

equilibrium characterization in equation (14) and lemma 4. As discussed above,
some agent must have a hierarchy at which he is the first-order investor. Without
loss, choose t1,1 to play that role and require m1

1 > 2=3 (this is condition [B1]).
Choose t 2,1 to be the second-order investor, who invests on the basis of second-
order beliefs, that is, t2,1 ∈ r2

2. This is equivalent to m1
2 1 ð1=3Þb*2 ðt1,1jt2,1Þ > 2=3,

where

m1
2 ≔ olAl1m

l1

A2
1

,

b*2 ðt1,1jt2,1Þ ≔ A11

A2
1

:

(B5)

This is precisely condition (B2) for r 5 1, where (B5) is agent 2’s second-order
belief that t1 ∈ r1

1. Given that agent 2 invests on the basis of second-order beliefs
at t 2,1, agent 1 invests on the basis of third-order beliefs if t1,2 ∈ r3

1, which is equiv-
alent to condition (B3) for l 5 2, and so on. In conclusion, the system (B1)–
(B4) describes the most efficient way of inducing joint investment with probabil-
ity 1. If the system has a solution, it must be e*m .

Proof of Claim 1

Only if.—By way of contradiction, suppose that e*m induces joint investment with
certainty at m ≤ 1=2. Then, e*m must solve system (B1)–(B4). Adding up inequal-
ities (B1) and (B3) for l 5 2, : : : , L, we obtain

o
l ,r

Alrm
lr >

2

3ol A
1
l 2

1

3o
L

l52
o
l21

r51

Alr ,

which can be rewritten as

m >
2

3
2

1

3o
L

l52
o
l21

r51

Alr , (B6)
TABLE B1
Optimal Minimal Distributions for m ≥ 2/3

e*m t 2,1

t1,1 1
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using equation (B4). Adding up equations (B2) for r 5 1, : : : , R , we similarly obtain

m >
2

3
2

1

3or o
r

l51

Alr : (B7)

Note that oL
l52ol21

r51Alr 1 oror
l51Alr 5 oR

r oL
l Alr 5 1. Therefore, adding up equa-

tions (B6) and (B7), we get 2m > 2 � ð2=3Þ 2 ð1=3Þ, which implies that m > 1=2.
If.—Suppose that m > 1=2. For m > 2=3, e*m in table B1 induces joint investment

with certainty. For m ∈ ð1=2, 2=3Þ, it can be easily checked that e*m in table 3 is a
solution to the system (B1)–(B4) with R 5 1 and L 5 2 and hence induces joint
investment with certainty. QED

From claim 1, we know that for m ≤ 1=2, the designer can no longer ensure
that I will be played at all hierarchies. By lemma 5, the hierarchies at which N
is played must have first-order beliefs of zero. To obtain the optimal minimal dis-
tributions for m ≤ 1=2, we set

mR
2 ≔ olAlRm

lR

A2
R

5 0 (B8)

and replace condition (B2) for r 5 R with it. We then find the smallest m for
which the system has a solution and repeat this procedure by setting mL

1 5 0
and replacing condition (B3) for l 5 L with it, and so on.

Proof of Claim 2

Consider the case when the last K types of agent 1 and the last K types of agent 2
do not invest.18 This means that the system becomesf o

r

A1rm
1r >

2

3
A1

1, (B9)

o
l

Alrm
lr >

2

3
A2

r 2
1

3o
r

l51

Alr for r 5 1, ::: , R 2 K , (B10)

o
r

Alrm
lr >

2

3
A1

l 2
1

3o
l21

r51

Alr for l 5 2, ::: , L 2 K , (B11)

o
l

Alrm
lr 5 0 for r 5 R 2 K 1 1, ::: , R , (B12)

o
r

Alrm
lr 5 0 for l 5 L 2 K 1 1:::: , L, (B13)

o
l ,r

Alrm
lr 5 m, (B14)

where the first-order beliefs of the last K noninvesting types of both agents have
been set equal to zero. Adding up each side of the conditions corresponding to
agent 1 ([B9], [B11], and [B13]) and using equation (B14), we get
18 Note that the only options are that the last K types of both agents do not invest or the
last K types of agent 1 and the last K 2 1 types of agent 2 do not invest.
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m >
2

3 o
L2K

l51

A1
l 2

1

3 o
L2K

l52
o
l21

r51

Alr 5
2

3 o
L2K

l51
o
R2K

r51

Alr 1
2

3 o
L2K

l51
o
R

r5R2K11

Alr 2
1

3 o
L2K

l52
o
l21

r51

Alr (B15)

and, correspondingly, for agent 2 (adding up each side of conditions [B10] and
[B12]),

m >
2

3 o
R2K

r51

A2
r 2

1

3 o
R2K

r51
o
r

l51

Alr 5
2

3 o
L2K

l51
o
R2K

r51

Alr 1
2

3 o
L

l5L2K11
o
R2K

r51

Alr 2
1

3 o
R2K

r51
o
r

l51

Alr : (B16)

Summing up the above two equations, we obtain

2m > o
L2K

l51
o
R2K

r51

Alr 1
2

3 o
L2K

l51
o
R

r5R2K11

Alr 1
2

3 o
L

l5L2K11
o
R2K

r51

Alr , (B17)

where we have used that

1

3 o
L2K

l52
o
l21

r51

Alr 1
1

3 o
R2K

r51
o
r

l51

Alr 5
1

3 o
L2K

l51
o
R2K

r51

Alr :

Note that inequality (B17) can be written as

2m > Prðboth investÞ 1 2

3
Prðonly 1 investsÞ 1 2

3
Prðonly 2 investsÞ: (B18)

Multiplying both sides by vðI, IÞ > 0, we obtain

2mvðI, IÞ > vðI, IÞ Prðboth investÞ 1 2

3
Prðonly 1 investsÞ 1 2

3
Prðonly 2 investsÞ

� �
:

(B19)

Note that the left-hand side of this inequality is ðcav~w*ÞðmÞ for m ≤ 1=2. Let us de-
note the right-hand side of (B19) by RHS(B19). The designer’s expected value at
any optimal e*m ∈ CM with m messages can be written as

E
e*m
v½ � 5 vðI, IÞ Prðboth investÞ 1 vðI, NÞ Prðonly 1 investsÞ

1 vðN, IÞ Prðonly 2 investsÞ:
(B20)

Then,

RHSðB19Þ 2 E
e*m
½v� 5 2

3
vðI, IÞ 2 vðN, IÞ

� �
Prðonly 1 investsÞ

1
2

3
vðI, IÞ 2 vðN, IÞ

� �
Prðonly 2 investsÞ:

(B21)

Hence, if ð2=3ÞvðI, IÞ 2 vðN, IÞ ≥ 0, then RHSðB19Þ ≥ E
e*m
½v�. This, in turn, implies

that

ðcav~w*ÞðmÞ > Ee*m ½v�
for m ≤ 1=2 and for any optimal e*m ∈ CM. QED
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